
ATLAS HLT and EventViews

B. Wynne

22/09/16



2

EventViews

Each EventView implements the same interface as the whole event store, and 
presents a subset of the data it contains

The views are intended to be general-purpose objects

 - They can contain data objects that describe a corresponding RoI
 - Allows for potential alternative use-cases

Vi
ew

 1

Vi
ew

 2

Ev
en

t 
St

or
e

DATA

DATA

DATA

DATA

RoI info

DATA

RoI info

DATA

DATA

DATA



3

Event views – open question

The HLT as it is today processes Regions of Interest (RoIs). Different numbers of 
RoIs are created each event, and algorithms can be executed multiple times per 
event, using a different RoI each time

We are investigating a more GaudiHive/AthenaMT-friendly approach: to merge 
multiple RoIs of the same type into single views that can be defined in advance, 
but this would be a significant, untested change for the HLT

μ

j

j
μ

j

μ

j

j
μ

j

One view per RoI

DYNAMIC VIEWS:
Arbitrary number each event

More like today's HLT

One view for each RoI type

STATIC VIEWS:
Can be defined in configuration

Cannot support today's HLT

η

θ



4

Issues with EventViews

1) How does an algorithm run in an EventView?

At the moment it looks something like this (Static views case):

GAUDI ATHENA
View class in Control/AthViews

View implements IProxyDict

(AthAlgorithm base class takes 
View pointer from EventStore)

VarHandleBase has method 
setProxyDict



5

Issues with EventViews

1) How does an algorithm run in an EventView?

At the moment it looks something like this (Dynamic views case):

GAUDI ATHENA

EventContext has IProxyDict 
pointer (forward-declared)

Scheduler passes EventContext to 
algorithm

View class in Control/AthViews

View implements IProxyDict

(AthAlgorithm base class takes 
View pointer from EventContext)

VarHandleBase has method 
setProxyDict



6

Issues with EventViews

2) Who runs the algorithms in the EventViews?

In the static views case, it's the scheduler as it currently stands
 - The scheduler executes the algorithms
 - The algorithm is configured to use a particular view

In the dynamic views case, it's a little more open...



7

Trigger menu

In the HLT-specific layer of the old Athena framework, the scheduling of 
algorithms and resulting event accept/reject decisions were made by the 
“steering” class

The AthenaMT scheduler replaces steering, but does not take trigger decisions

A decision is made in three stages:
1) Feature EXtraction (FEX) algorithms reconstruct detector data
2) Hypothesis (HYPO) algorithms apply selection criteria
3) Passed/failed hypotheses compared to trigger “menu” to select events

The first two stages were handled by algorithms, the third by the steering itself

Tr
ig

ge
r 

St
ee

ri
ng

ACCEPT

REJECT

FEX
e.g. Calorimeter 

clustering

HYPO
e.g. Cluster
Et > 20 GeV



8

Trigger menu

In the HLT-specific layer of the old Athena framework, the scheduling of 
algorithms and resulting event accept/reject decisions were made by the 
“steering” class

The AthenaMT scheduler replaces steering, but does not take trigger decisions

A decision is made in three stages:
1) Feature EXtraction (FEX) algorithms reconstruct detector data
2) Hypothesis (HYPO) algorithms apply selection criteria
3) Passed/failed hypotheses compared to trigger “menu” to select events

The first two stages were handled by algorithms, the third by the steering itself

We now introduce menu algorithms, fully replacing the steering

A
th

en
aM

T 
Sc

he
du

le
r ACCEPT

REJECT
M

en
uFEX

e.g. Calorimeter 
clustering

HYPO
e.g. Cluster
Et > 20 GeV



9

Menu algorithms

To provide early rejection, menu decisions are taken in several stages, with FEX 
and HYPO algorithms scheduled in between

FE
X

H
YP

O

M
en

u

D
et

ec
to

r 
re

ad
ou

t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I 

cr
ea

ti
on



10

Menu algorithms

RoI information is read in from the detector and used to create and populate 
EventViews

The menu algorithms are responsible for assigning FEX and HYPO algorithms to 
an appropriate view

FE
X

H
YP

O

M
en

u

D
et

ec
to

r 
re

ad
ou

t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I 

cr
ea

ti
on



11

Menu algorithms

If there is no appropriate RoI, or if a decision is taken to reject the event, then 
FEX and HYPO algorithms are never scheduled

FEX and HYPO algorithms are configured never to run on a whole event, and are 
skipped by the AthenaMT scheduler

FE
X

H
YP

O

M
en

u

D
et

ec
to

r 
re

ad
ou

t

M
en

u

M
en

u

Ro
I 

cr
ea

ti
on



12

Menu algorithms

The menu algorithms prompt the scheduling of FEX and HYPO algorithms, 
allowing them to be run multiple times per event where there are multiple RoIs 
to process

M
en

u

D
et

ec
to

r 
re

ad
ou

t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I 

cr
ea

ti
on

FE
X

H
YP

O



13

Issues with EventViews

2) Who runs the algorithms in the EventViews?

In the static views case, it's the scheduler as it currently stands
 - The scheduler executes the algorithms
 - The algorithm is configured to use a particular view

In the dynamic views case, it's a little more open...

We need a way to
 - configure algorithms without them running each event
 - consume new EventContexts (with attached Views) created by algorithms
 - assign one or more algorithms to the context+view
 - have a control-flow kind of dependency between the running views and a 
downstream algorithm that inspects outcomes



14

Early reject

In the dynamic views case, most algorithms do not run by default
 - Early reject ~= choosing not to run more algorithms in views

In the static views case, we have the same (large) data flow graph for each 
event

Even just passing around dummy empty data objects is a pretty significant 
overhead

In either case – but particularly in the static case – there would be an advantage 
to being able to abort processing


	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

