
Processing multiple events,
lumis, runs

Benedikt Hegner

(CERN EP-SFT)

3.8.2016

A little warning

It may be that my proposal solves a problem that

de-facto does not exist for ATLAS and LHCb

Run/lumi-dependent data

One of the dreams is to have “stateless” (well, re-entrant) algorithms. This is

destroyed by frame-dependent (*) data like:

1. Statistics counters (#events seen, efficiencies, …)

2. Monitoring histograms

3. ...

⇒ we should factor them out and separate algorithms and data

⇒ frame-dependent data are hidden behind special handles and live outside the

algorithm

(*) frame is a more generic term for run, lumi, …

Using frame slots

Generalize and replace the eventSlot with a frameSlot:

➔ the number of frameSlots defines how many lumis/runs/conditions can be active at a time

➔ access to run/lumi-specific data is forwarded to the respective slot

➔ both event and frame slots are managed by the EventLoopMgr

Could re-use interface of data handles:

1. FrameSpecific<T> for frame specific data

2. FrameRead<T>, FrameWrite<T> for data stored in run/lumi blocks

From user perspective:

 // event specific
 ReadDataHandle<ElectronCollection> m_electrons{...};
 // run data
 RunSpecific<Counter> m_events;

Notification about begin/end of frames

The incidents as implemented now are not context-aware

⇒ need to add a context to such messages

Once a new frame enters the event loop, the EventLoopManager picks a frameSlot,

and notifies clients via ::beginFrame(frameSlot)

Once all events of a frame left the event loop, the EventLoopManager notifies all

clients via ::endFrame(slot) and is then free to re-use the slot.

It is not entirely trivial, as a certain order may be needed, e.g. run data has to written

into the run record before the data are written to disk.

⇒ no new requirement w.r.t. current framework though

A full example

Reading new run and a few events from input file triggers the following behaviour:

The EventLoopMgr

1. Opens a new frame slot for that run

2. Triggers beginRun(frameSlot) for all relevant components

a. Algorithms initialize run-specific data

1. Opens eventSlots for all events and pushes them to the scheduler

2. Upon completion of all events in the run trigger endRun(frameSlot)

a. Algorithms flush run-specific data

3. Frees the frame slot

Comparison to CMS’ solution

This proposal: separate algorithms and data

⇒ algorithms are frame-independent

⇒ data are multiplied for multiple frames

⇒ access to data is dispatched at runtime

⇒ #concurrent frames limited by #slots

CMS: split application into “streams” that have a guaranteed run ordering

⇒ algorithms with run-specific states are tied to a given stream

(required deriving from different classes to pick proper behaviour)

⇒ algorithms and states therein are multiplied for multiple streams

⇒ #concurrent runs limited by #streams

Status and Summary

Proposed a solution for handling runs and lumi-sections in

general

1. Even better separation of algorithms and data

2. Context-aware pointers

Made a (dirty!) proof-of-principle in a branch of mine:

https://gitlab.cern.ch/hegner/Gaudi/tree/frame

https://gitlab.cern.ch/hegner/Gaudi/tree/frame
https://gitlab.cern.ch/hegner/Gaudi/tree/frame

