
C. Leggett 2016-09-22
1

Managing Asynchronous Data in
ATLAS's Concurrent Framework

Charles Leggett

Gaudi Workshop 2016

C. Leggett 2016-09-22
2

Conditions Handling in ATLAS
► Conditions: data which changes over the course of a job, at a frequency which is not

event based
• can be simple constants read from a dB ("raw")
• can be derived, which requires some form of processing ("calibrated")

• in ATLAS, managed by the IOVSvc and IOVDbSvc
• "derived" conditions produced by callback functions which are registered with the IOVSvc

– usually AlgTools, but can be anything with the right signature
• dependencies can be registered against each other in a hierarchical graph

► Detector Alignments follows the same patterns
• we should not try to solve the problem twice!

► Depending on the type of job, the frequency of updates can be anywhere from once
per job, to once per event.
• can be hundreds of objects updated regularly in a job

C. Leggett 2016-09-22
3

Serial Processing with Conditions

Alg_A ConditionStore

c1

c2

c3Alg_B
c1

Alg_C
c2

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

Event 1

► All framework elements process
data from the same IOV

► Algorithms are blind to the IOV,
retrieve data from
ConditionStore

► At the start of every Event,
IOVSvc checks IOVs, and
triggers any necessary updates
• handled by the Callback Functions
• Callback Functions are shared

instances

► Only one copy of any
Conditions object is maintained
in the Store

Serial

C. Leggett 2016-09-22
4

Serial Access Pattern

Alg Handle Storegate Proxy IOVSvc CondDB FrontierPPSvc

regHandle(handle,key)

 accessData()

T* DataObj*

reset()

callback(dbKey)

T*

regFcn(this,&Fcn,handle,key)

reset()

in
iti

a
liz

e
/

B
e

g
in

R
u

n
e

xe
cu

te
as

yn
c

bindHandle(handle)

IOVDbSvc

IOV,string

getData(key)

DataObj*

PersSvc

updateAddress(TA) updateAddress(TA)

buildIOA(string)

IOA

setRange(clID,key,IOV)

createObj(IOA)

setAddress(IOA)

IOA IOA

buildIOA(string)

partial IOA

regProxy(proxy)

bind(handle,key)

a different
DataHandle

C. Leggett 2016-09-22
5

Serial Processing with Conditions

Alg_A ConditionStore

c1

c2

c3Alg_B
c1

Alg_C
c2

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

Event 1

Event 2

Event 3

Event 4

Serial

C. Leggett 2016-09-22
6

Concurrent Processing with Conditions

Alg_A

Alg_B
c1

Alg_C
c2

Event 1

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

ConditionStore

c1

c2

c3

Alg_A

Alg_B
c1

Alg_C
c2

Event 2

c1

BeginEvent

IOVSvc, Callback Functions
and ConditionStore are

shared between all Events

Concurrent

C. Leggett 2016-09-22
7

Concurrent Processing with Conditions

Alg_A

Alg_B
c1

Alg_C
c2

Event 1

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

ConditionStore

c1

c2

c3

Alg_A

Alg_B
c1

Alg_C
c2

Event 2

c1

BeginEvent

IOVSvc, and Callback
Functions are shared

between all Events

ISSUESISSUES

► The current callback functions
are NOTNOT thread-safe

► Even if they were made thread-
safe, could NOTNOT run with
multiple concurrent Events
from different IOVs due to the
single ConditionStore

► IOV infrastructure needs to be
significantlysignificantly modified for MT

ISSUESISSUES

► The current callback functions
are NOTNOT thread-safe

► Even if they were made thread-
safe, could NOTNOT run with
multiple concurrent Events
from different IOVs due to the
single ConditionStore

► IOV infrastructure needs to be
significantlysignificantly modified for MT

Concurrent

C. Leggett 2016-09-22
8

Relevant Requirements for AthenaMT

► Requirement: Try to minimize changes to User code
• there's lots and lots of it!
• avoid forcing Users to implement fully thread-safe code by handling most thread-safety

issues at the framework / Services level

► Requirement: All access to Event data via DataHandles, which also declare data
dependency relationship to the framework
• we can use this by forcing migration to ConditionHandles as well

C. Leggett 2016-09-22
9

Concurrent: Scheduling Barrier

Event 1 Event 2 Event 3

Event 4

Event 5 Event 6

one ConditionStore
shared by all Events

Scheduler can only
concurrently process
events which have allall
Conditions in the same

IOV

NO changes
required in User code
and minimal changes

in IOV code

C. Leggett 2016-09-22
10

Concurrent: Scheduling Barrier

Event 1 Event 2 Event 3

Event 4

Event 5 Event 6

one ConditionStore
shared by all Events

Scheduler can only
concurrently process
events which have allall
Conditions in the same

IOV

ISSUESISSUES

► loss of Concurrency when Scheduler
is drained at a barrier
• barrier is at intersectionintersection of all IOVs
• significant impact on Event

throughput if IOVs change often

► Events must be processed in order,
or reshuffled by the Scheduler to
avoid bouncing back and forth

C. Leggett 2016-09-22
11

Concurrent: Multiple Condition Stores

Event 1

Event 4

Event 2 Event 3

Event 7

Event 5 Event 6

Event 8 Event 9

one Store per
concurrent Event

► ConditionStore
follows same basic
structure and access
patters as Event Store
• access via

ConditionHandles
that know which store
to access

► Callback Functions
must now be thread
safe

C. Leggett 2016-09-22
12

Concurrent: Multiple Condition Stores

Event 1

Event 4

Event 2 Event 3

Event 7

Event 5 Event 6

Event 8 Event 9

one Store per
concurrent Event

ISSUESISSUES

► duplicationduplication of
ConditionStores
• large memory

overhead

► duplicationduplication of work
for execution of
callback functions

C. Leggett 2016-09-22
13

Multiple Condition Stores : IOV Intersection

Event 1

Event 4

Event 2 Event 3

Event 7

Event 5 Event 6

Event 8 Event 9

one Store per
IOV intersection

► take AND of all IOVs
• ConditionSlot
• all condition objs static

for all events in this
range

• can have 1 to N active
slots, where N ==
number of concurrent
events

► CondHandles know
which Condition Slot to
point to

C. Leggett 2016-09-22
14

ISSUESISSUES

► duplicationduplication of
ConditionStores
• large memory

overhead, though
less than 1 per evt
slot

► duplicationduplication of work
for execution of
callback functions

Multiple Condition Stores : IOV Intersection

Event 1

Event 4

Event 2 Event 3

Event 7

Event 5 Event 6

Event 8 Event 9

one Store per
IOV intersection

C. Leggett 2016-09-22
15

Multi-Cache Condition Store
► Single multi-cache Store for Conditions data

► Each Store element is a container that holds multiple instances of the Condition data
objects (ConditionContainer), one per IOV

► Clients access the data via smart ConditionHandles, that point to the appropriate
entry in the ConditionContainer objects for a given Event
• ConditionHandles are constructed with an EventContext object
• from the Client's point of view, these objects look like any other object in the EventStore

(keyed with a unique identifier)
• Client Algorithms declare a data dependency on the conditions data object

► Updating functions are scheduled by the framework, that load new elements as
needed from the DB, and perform any necessary computations
• IOVSvc callback functions are migrated into ConditionAlgorithms
• these Algorithms are only scheduled when they enter a new IOV

C. Leggett 2016-09-22
16

➔ One ConditionStore,
shared by all Events.
➔ no wasted memory
➔ no duplicate calls
➔ Store elements are

ConditionContainers,
with one entry per IOV

➔ Data access via
ConditionHandles
that point to
appropriate entry

➔ Callback Functions
become Algorithms,
scheduled by framework

Concurrent: Single Multi-Cache Condition Store

Event 1 Event 2 Event 3

Event 5 Event 6 Event 7

C. Leggett 2016-09-22
17

Alg_A
 In:
 Out: a, b

ConditionHandles

a

b

x

CondDbSvc

w

Alg_B
 In: a
 Out:

Alg_C
 In: b, x
 Out:

CondAlg_X
 In:
 Out: x

ConditionStore

x1 x2 x3

y1 y2

z1 z2 z3

CondSvc
regHandle(x)

EventStoresEventStoresEventStores

a

b

c

C. Leggett 2016-09-22
18

Functionality
► During initialize, CondAlgs register their WriteCondHandles with the CondSvc

► At the start of each event, the ForwardScheduler will:
• query CondSvc to determine which CondObjIDs are valid/invalid
• query ExecutionFlowGraph to find producer CondAlg of these objects

• we could build this locally once since it's fixed, but the EFG is pretty efficient

• if any objects produced by a CondAlg is invalid, schedule the Alg to execute, otherwise
mark it as already executed

• update data catalog with all valid CondObjIDs
► Only CondAlgs that produce new data (ie, the CondObj has entered a new validity

range) will execute

► Can make this scheme even simpler if we integrate condition object validities into the
Scheduler

StatusCode ICondSvc::regHandle(IAlgorithm* alg,
 const Gaudi::DataHandle& id,
 const std::string& dBkey);

StatusCode ICondSvc::regHandle(IAlgorithm* alg,
 const Gaudi::DataHandle& id,
 const std::string& dBkey);

C. Leggett 2016-09-22
19

CondHandle Node in Scheduler
► Augment the regular data flow rules with a new type

of node.
► CondHandle node will be a bit smarter than a

regular data object node.
• carry the list of IOVs, objects for which are currently

available in the ConditionStore.
• when a node visitor, which is event-time-aware,

enters a CondHandle node on request from, e.g.,
Alg1, it can figure out whether to declare this
CondHandle as valid for Alg1, or trigger the parental
CondAlg to load the missing object/IOV to
ConditionStore.

• When it is loaded, another visitor is launched by
CondAlg in the backwards direction to notify all
related Alg consumers of this change.

► In this approach, the graph of precedence rules is a
singleton across all events.

C. Leggett 2016-09-22
20

Conditions Data With No Callback
► Significant fraction of Conditions data has no associated callback function ("raw")

• big overhead if we have to create a new CondAlg for each one!
• want to just read them in, provide WriteCondHandles for them (to satisfy downstream data

dependencies), update the handle when it gets into a new validity range

► generic alg IOVSvc/CondInputLoader
• supply with list of db items (folders) to be loaded, just like with the IOVDbSvc

from IOVSvc.IOVSvcConf import CondInputLoader
topSequence += CondInputLoader("CondInputLoader")

topSequence.CondInputLoader.load += [
 ('AthenaAttributeList', '/path/to/DB/folder1'),
 ('AthenaAttributeList', '/path/to/DB/folder2'),
 ('CaloLocalHadCoeff', '/CALO/HadCalib/CaloEmFrac')]

from IOVSvc.IOVSvcConf import CondInputLoader
topSequence += CondInputLoader("CondInputLoader")

topSequence.CondInputLoader.load += [
 ('AthenaAttributeList', '/path/to/DB/folder1'),
 ('AthenaAttributeList', '/path/to/DB/folder2'),
 ('CaloLocalHadCoeff', '/CALO/HadCalib/CaloEmFrac')]

C. Leggett 2016-09-22
21

Detector Geometry Alignment

► ATLAS's geometry model (GeoModel) is
not exposed to Detector Description
clients

► Readout geometry layer consists of
subsystem specific Detector Elements

► Each Detector Element has a pointer to
Full Physical Volume

Detector
Element

DD CC

TFTF ATFATF

TFTF PVPV

PVPV

PVPV FPVFPV

Client

TFTF

ATFATF

Physical Volume
(basic GeoModel
building block)

Full Physical
Volume

Transform
(fixed after construction)

Alignable Transform
(modifiable at will)

DD Delta TransformCC Cached Position

PVPV

FPVFPV

Serial

C. Leggett 2016-09-22
22

Geometry Alignments in AthenaMT

► The Alignment Object is a regular ConditionObject in a ConditionContainer, so it
should be handled as any other ConditionObject in AthenaMT
• Created by a ConditionAlgorithm (replacement of current callback function)
• Accessed from the FPV and ATF via ConditionHandle

► By making Detector Elements aware of the Alignment Objects we can make the
transition transparent to Detector Description clients

ConditionStore

DD

CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Detector
Element

Client

DD

CC

DD

CC

DD

CC Alignment
Object

GeoAlignAlg

Concurrent

C. Leggett 2016-09-22
23

Conclusions
► Have to be able to handle rapidly changing conditions with short IOVs

► Use concept of Handles to manage data dependencies and hide implementation
details
• clients are blind to condition updates once they use CondHandles

► Re-use existing components
• Algorithms for processing units
• Data dependencies
• Scheduler to do updates on demand

► Detector Alignments can use same infrastructure

► Minimize memory
• only one Condition Store
• objects are held in containers, one entry per IOV

• garbage collection can be done on a per-object level

C. Leggett 2016-09-22
24

Extras

C. Leggett 2016-09-22
25

Memory Management

► While a multi-cache store makes optimal use of memory (no duplication of objects), the
store will continue to grow with time

► Depending on memory constraints, may become necessary to perform garbage
collection
• prune ConditionContainers of old, unused entries

► Possible pruning techniques:
• only keep N copies
• keep reference count of which entries are in use, purge old entries

C. Leggett 2016-09-22
26

CondInputLoader Functionality

CondInputLoader::initialize() {
 // do translation of FolderName to SGKey
 …
 // set the Write dependencies via linking Property "Load" to ExtraOutputDeps()
 …

 // register Write DataHandles with CondSvc
 for (auto &e : m_load) {
 if (e.key() == "") {
 sc = StatusCode::FAILURE;
 ATH_MSG_ERROR(" ERROR: empty key is not allowed!);
 } else {
 Gaudi::DataHandle dh(e, Gaudi::DataHandle::Writer, this);
 if (m_condSvc->regHandle(this, dh, e.key()).isFailure()) {
 ATH_MSG_ERROR("Unable to register WriteCondHandle " << dh.fullKey());
 sc = StatusCode::FAILURE;
 }
 // remove proxy reset control from old IOVSvc
 m_IOVSvc->ignoreProxy(dh.fullKey().clid(), e.key());
 }
 }
}

CondInputLoader::initialize() {
 // do translation of FolderName to SGKey
 …
 // set the Write dependencies via linking Property "Load" to ExtraOutputDeps()
 …

 // register Write DataHandles with CondSvc
 for (auto &e : m_load) {
 if (e.key() == "") {
 sc = StatusCode::FAILURE;
 ATH_MSG_ERROR(" ERROR: empty key is not allowed!);
 } else {
 Gaudi::DataHandle dh(e, Gaudi::DataHandle::Writer, this);
 if (m_condSvc->regHandle(this, dh, e.key()).isFailure()) {
 ATH_MSG_ERROR("Unable to register WriteCondHandle " << dh.fullKey());
 sc = StatusCode::FAILURE;
 }
 // remove proxy reset control from old IOVSvc
 m_IOVSvc->ignoreProxy(dh.fullKey().clid(), e.key());
 }
 }
}

C. Leggett 2016-09-22
27

CondInputLoader Functionality

CondInputLoader::execute() {
 for (auto &obj: m_load) {

 CondContBase* ccb(0);
 if (! m_condStore->retrieve(ccb, obj.key()).isSuccess()) {
 ATH_MSG_ERROR("unable to get CondContBase* for " << obj
 << " from ConditionStore");
 continue;
 }

 if (! ccb->valid(now)) {
 if (m_IOVSvc->createCondObj(ccb, obj, now).isFailure()) {
 std::string dbKey = m_folderKeyMap[obj.key()];
 ATH_MSG_ERROR("unable to create Cond object for " << obj << " dbKey: "
 << dbKey);
 return StatusCode::FAILURE;
 } else {
 ATH_MSG_INFO(" CondObj " << obj << " is still valid at " << now);
 }
 evtStore()->addedNewTransObject(obj.clid(), obj.key());
}

CondInputLoader::execute() {
 for (auto &obj: m_load) {

 CondContBase* ccb(0);
 if (! m_condStore->retrieve(ccb, obj.key()).isSuccess()) {
 ATH_MSG_ERROR("unable to get CondContBase* for " << obj
 << " from ConditionStore");
 continue;
 }

 if (! ccb->valid(now)) {
 if (m_IOVSvc->createCondObj(ccb, obj, now).isFailure()) {
 std::string dbKey = m_folderKeyMap[obj.key()];
 ATH_MSG_ERROR("unable to create Cond object for " << obj << " dbKey: "
 << dbKey);
 return StatusCode::FAILURE;
 } else {
 ATH_MSG_INFO(" CondObj " << obj << " is still valid at " << now);
 }
 evtStore()->addedNewTransObject(obj.clid(), obj.key());
}

C. Leggett 2016-09-22
28

IOVSvc::createCondObj
IOVSvc::createCondObj(CondContBase* ccb, const DataObjID& id,
 const EventIDBase& now) {
 if (getRangeFromDB(id.clid(), id.key(), t_now, range, tag, ioa).isFailure()) {
 ATH_MSG_ERROR("unable to get range from db for "
 << id.clid() << " " << id.key());
 return StatusCode::FAILURE;
 }

 DataProxy *dp = ccb->proxy();
 DataObject* dobj(0);
 void* v(0);
 if (dp->loader()->createObj(ioa, dobj).isFailure()) {
 ATH_MSG_ERROR(" could not create a new DataObject ");
 return StatusCode::FAILURE;
 } else {
 v = SG::Storable_cast(dobj, id.clid());
 }
 EventIDRange r2(EventIDBase(range.start().run(), range.start().event()),
 EventIDBase(range.stop().run(), range.stop().event()));

 if (!ccb->insert(r2, v)) {
 ATH_MSG_ERROR("unable to insert Object at " << v << " into CondCont "
 << ccb->id() << " for range " << r2);
 return StatusCode::FAILURE;
 }
 return StatusCode::SUCCESS;
}

IOVSvc::createCondObj(CondContBase* ccb, const DataObjID& id,
 const EventIDBase& now) {
 if (getRangeFromDB(id.clid(), id.key(), t_now, range, tag, ioa).isFailure()) {
 ATH_MSG_ERROR("unable to get range from db for "
 << id.clid() << " " << id.key());
 return StatusCode::FAILURE;
 }

 DataProxy *dp = ccb->proxy();
 DataObject* dobj(0);
 void* v(0);
 if (dp->loader()->createObj(ioa, dobj).isFailure()) {
 ATH_MSG_ERROR(" could not create a new DataObject ");
 return StatusCode::FAILURE;
 } else {
 v = SG::Storable_cast(dobj, id.clid());
 }
 EventIDRange r2(EventIDBase(range.start().run(), range.start().event()),
 EventIDBase(range.stop().run(), range.stop().event()));

 if (!ccb->insert(r2, v)) {
 ATH_MSG_ERROR("unable to insert Object at " << v << " into CondCont "
 << ccb->id() << " for range " << r2);
 return StatusCode::FAILURE;
 }
 return StatusCode::SUCCESS;
}

