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Motivation
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Previously in GaudiHive...

● Gaudi was designed for single-core CPUs
● One Gaudi process per CPU core won't scale[1]

– Excessive RAM usage caused by data duplication
● One event at a time won't scale[2]

– Limited intra-event concurrency
● Concurrent events mean concurrent conditions

– Legacy condition code not designed for this

[1] G. Stewart, “Overview and Status for ATLAS Phase I Software Upgrades”, 2015-12-01
[2] I. Shapoval, PhD Thesis, 2016-03-18

https://indico.cern.ch/event/460291/contributions/1132283/attachments/1196895/1739814/stewart-phase1-software-dec2015.pdf
https://cds.cern.ch/record/2149420/files/CERN-THESIS-2016-028.pdf
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Two opinions

● Experiment developer will conclude:
– Our custom condition code needs fixing

● Framework developer will conclude:
– Conditions not an experiment specific concern
– Gaudi should be taking care of this for you

● These viewpoints do not seem incompatible
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A vision for Gaudi

● Gaudi should be aware of conditions
● It should provide a standard interface to them
● It should not dictate every detail

– Can provide architecture + default implementation
– Should enable a progressive migration from current 

experiment-specific infrastructure
– And must allow experiment-specific tuning
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Requirements & design
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Problem statement[3]

● Detector state is used during event processing
● It can be decomposed into sub-components
● Some of these are time-dependent

– Time evolution modeled as sudden changes
– Versioned data with Intervals of Validity (IoV)
– We call a version of a state component a condition

● Must load/compute conditions as needed

[3] Iterated from https://twiki.cern.ch/twiki/bin/view/Gaudi/CommonConditionInfrastructure

https://twiki.cern.ch/twiki/bin/view/Gaudi/CommonConditionInfrastructure
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A visual representation
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(Caveat: Events are interleaved during parallel processing)
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– We call a version of a state component a condition
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Condition access

● Consensus: Use smart pointers/data handles
● Must account for data versioning

– Should support concurrent condition storage
– Could use a piece of EventContext to tell which 

conditions should be used
● Must be able to choose/swap storage backend

– Many possibilities: DetectorStore(s), ATLAS' 
ConditionStore, DD4Hep…

● Must integrate with existing infrastructure
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Storage requirements

● Cannot hide every implementation detail
– Concurrent storage has an impact on clients

● Large code changes required (all singletons must go)
● Only worthwhile if condition switches frequent/expensive
● As a specialized optimization, should be optional

– Bounded RAM usage  bounded storage capacity→

– Must think about garbage collection from day one
– Thread synchronization can become a bottleneck
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Problem statement
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How do you measure time?

● Clocks
– Intrinsic precision?
– Synchronization?

● Atomic counters
– What are you counting?

(Events? Runs? Lumiblocks?)
– How are you counting it?

(Un-/signed? 32-/64-bit?)

 → Actually an experiment-specific mixture
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A timing abstraction

● Experiments define time points
– May have multiple internal representations
– Different representations are not comparable
– Give partial order & prioritize representations

● All time points follow a common interface
– Check if time points are comparable
– Compare time points with one another
– Separate representations when needed
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Modeling IoVs

● From time points, one can build time intervals
– Defined using two comparable time points
– Can tell if a time point falls into an IoV
– Can be intersected to compute global IoV
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Problem statement
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When to generate?

● Important design choices to be made here!
● Prepare everything before event is processed?
● Perform async writes during event processing?
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A visual comparison
● Sequential synchronous generation

● Concurrent synchronous generation

● Asynchronous generation (overlapping w/ first event in IoV)
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When to generate?

● Important design choices to be made here!
● Prepare everything before event is processed?

– Eases progressive migration
– Condition reads do not require synchronization*
– Simplifies the design in many ways
– Drawback: Scheduling of new events is delayed

● Concurrency can reduce the delay, not eliminate it
● An issue if condition switches very expensive/frequent

* Given careful storage design: no centralized, growable, blocking container...
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When to generate?

● Important design choices to be made here!
● Prepare everything before event is processed?
● Perform async writes during event processing?

– Reduces event scheduling delay, at a price
● More complex design and code migration
● Coupling condition & event processing is unfortunate
● Requires blocking-aware (more complex) scheduling
● Later events with same conditions still need to wait

– This is the road that ATLAS have taken so far[4]

[4] C. Leggett, “Managing Asynchronous Data in ATLAS' Concurrent Framework”, 2016-08-05

http://indico.cern.ch/event/432527/contributions/1072095/attachments/1321107/1981202/2016.08.05_ICHEP_AsyncData_w2.pdf
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When to generate?

● Important design choices to be made here!
● Prepare everything before event is processed?
● Perform async writes during event processing?
● Can we support both approaches? Should we?
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Generation process

● Need a configurable, plugin-based architecture 
to account for experiment specifics

● Must separate “raw” IO and “derived” compute
– TBB tasks are optimal for CPU-bound workloads
– IO starves CPU unless extra threads are added

● Concurrent generation[5] is a nice optimization!
– Can TBB handle a hybrid task/thread flow graph?
– Integration in the existing Gaudi architecture?

[5] C. Leggett, “Conditions Access”, 2016-01-20

https://indico.cern.ch/event/485894/contributions/1162899/attachments/1214046/1773569/2016.01.20_Conditions.pdf
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Performance requirements?

● Condition access must be fast (many/event)
– Reentrant handles have a cost
– Must allow caching with a reasonable lifetime

● Generation: depends on experiment choices
– IoV switching rates (global, individual)
– Costs of condition vs event processing

● Better designs possible when generation is rare
– Less coupling, more efficient access and GC
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Condition client interface
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10000 foot view[6]

● Every time a new event comes up
– EventLoopMgr calls the ConditionSvc
– Provides the time point associated with the event
– Requests a ConditionSlot

● ConditionSvc retrieves or constructs such a slot
● (Smart-)reference to it stored in EventContext
● Used by ConditionHandles to access data

[6] Iterated from B. Hegner, “Condition and Run Handling in Gaudi Mila”, 2016-08-08

https://indico.cern.ch/event/523936/contributions/2268964/attachments/1321656/1982281/GaudiConditionsLHCb.pdf
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Let's visualize this[6]
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Let's visualize this[6]
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Let's visualize this[6]
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Let's visualize this[6]
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Let's visualize this[6]
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ITimePoint

● Common interface to experiment time points
– Could & should be a template argument concept
– Should not be used all over the place then

● Inspired by ATLAS' EventID design
– Without experiment-specific data format
– Refocused on timing, not events
– Can also represent condition IoV boundaries
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ITimePoint concept

bool is_comparable_with( const ITimePoint & other ) const

bool operator<( const ITimePoint & other ) const

…

class InvalidTimePointComparison : public std::exception { … }

const size_t representations_count = // Experiment specific

using Representations = std::array< ITimePoint,
                                    representations_count >

Representations split_representations() const
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TimeInterval

● Framework-level notion of an IoV
● Based on pairs of ITimePoint
● Can be intersected to produce global IoVs
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TimeInterval interface

TimeInterval( const ITimePoint & start,
              const ITimePoint & stop )

bool contains( const ITimePoint & what ) const

void intersect_with( const TimeInterval & source )
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ConditionSlot

● Abstraction: Complete set of conditions
– Makes access & refcounting easier, more efficient
– Can share data with other ConditionSlots
– User can bound amount of slots in flight

● Has a global IoV = intersection of child IoVs
● Design concept, not directly exposed
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IConditionSvc

● Interface to the condition management system
● Given the timing data for a new event...

– Look for a matching busy slot in registry
● If there is one, increment refcount and return

– If no slot matches, try to allocate and fill up one
● Reuse condition data from neighbouring slots
● Generate the rest (do it synchronously or schedule it)

– If no free slot left, ask EventLoopMgr to retry later
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IConditionSvc interface

// Concrete ConditionSvc must provide this constructor
IConditionSvc( size_t slot_amount )

// Used when initializing algorithms, registers condition needs
template< typename RefToConst >
ConditionHandle<RefToConst> make_handle(
   const ConditionKey & key
)

// Used when a new event comes in
StatusCode prepare_slot(       ConditionSlotID & target,
                         const ITimePoint      & time )

// Called after event processing, possibly by ~EventContext()
void release_slot( const ConditionSlotID )
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ConditionHandle

● Used by Algorithms to read conditions
● Under the hood, goes through ConditionSlot

– Reentrant by design (current slot in EventContext)
– Should not be accessed in a loop

● Client can safely cache references during execute()
● Slot lifetime is managed on the scale of entire events
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ConditionHandle interface

template< typename RefToConst >
class ConditionHandle {

   // ConditionHandle are created by the ConditionSvc
   ConditionHandle() = delete

   // Fetches a const-reference to the condition data for the
   // associated condition key, in the active condition slot
   RefToConst get_current() const

}



40

Garbage collection design

● Condition slots are reference-counted
– Increment when new event is started
– Decrement when event processing completes
– Extremely efficient in the common case!

● Individual conditions are also refcounted
– Measure amount of slots which share the data
– Some overhead on slot creation/deletion
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What's next

● So far, focused on condition access
– Decoupling clients from condition management

● Also need to generate and store conditions
– Start with a sequential generation model
– Request the metadata needed for concurrency & IO

● Is a given condition generator thread-safe?
● Can it block the underlying OS thread?

– Provide a unified interface to storage backends
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Questions and comments!
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A place to hook

● Must be able to tell about incoming events…
– ...and the time when they occurred

● The best we have now is beginEvent
– No notion of event time
– Incidents are deprecated

● A use case for the replacement of incidents?
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Detector description toolkit

● Conditions could be managed by the detector 
description toolkit (e.g. DD4Hep) and merely 
linked into event data storage
– Still need to think about toolkit requirements
– Must allow concurrent storage or serialization
– Interface must allow garbage collection
– May require a notion of time as well
– Must make linking for every event efficient
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Give everything an IoV?

● Event = point-like IoV, global = infinite IoV?
– Would cause lots of unnecessary IoV checks
– Would force unnecessary scheduler complexity
– IoV management relies on experiment specifics, 

don't want to put these everywhere
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