Physics benchmarks, FCC-hh detector specifications

Michele Selvaggi (on behalf of the FCChh group)

CERN

Outline

- Physics Benchmarks
- FCC-hh Detector baseline
- · Physics Object performance

Motivations for FCC-hh

Ultimate discovery machine

- [1606.00947] directly probe new physics up to unprecendented scale
- discover/exclude:

```
- heavy resonances "strong" m(q^*) \approx 50 \text{ TeV},
                         "weak" m(Z') \approx 30 \text{TeV},
                                     m(gluino) \approx 10 TeV,
- SUSY
                                     m(stop). \approx 5 \text{ TeV}
```

Precision machine

probe Higgs self-coupling to few % level, and %-level precision for top yukawa and rare decays

- measure SM parameters with high precision
- complementary to e⁺e⁻ by probing high dim.operators in extreme kinematic regimes

Goals for CDR:

- Define a set of key physics benchmarks
- Evaluate optimize detector performance by maximizing physics reach for such benchmarks

Physics Benchmarks

Higgs Physics

- Higgs self-coupling (bbγγ, bbττ, bb+leptons)
- Top-Yukawa:
 - ttH, H $\rightarrow \gamma \gamma$ (threshold), H \rightarrow b b (boosted)
- Rare Higgs decays ($H \rightarrow cc, H \rightarrow \mu\mu, H \rightarrow Z \gamma$)
- "Big Five": Higgs decays (H \rightarrow 4I,WW, χ χ , $\tau\tau$, bb)
- VBF (VBS)
- BSM Higgs $(H^{+/-} \rightarrow tb)$

- γ , leptons, p_T , η acc
- b/tau tagging performance
- fwd jet tagging
- id performance and fake rates rejection

At threshold, 20×10^9 ggH events are produced at 30 ab-1 With pT(H) > 1 TeV, 10^6 H events at disposal.

Large statistics allow to these measurements to be performed in the "boosted" regime.

Extreme kinematics (large pT(H), m(VH)) enhance sensitivity to modifications of SM coupling through anomalous couplings / high dim. operators.

These can be nice complementary precision measurements to e⁺e⁻

Top physics

Top physics couplings:

```
tt \( \chi / \ Z \)
ttH/ttZ ratio? [1507.08169]
tWb (single top s-channel)
g t t
FCNCs, rare decays Orhan Cakir
```

At threshold, 10^{12} top pairs events are produced at 30 ab⁻¹ With pT(top) > 1 TeV, 500 10⁶ top pairs events at disposal.

Same comments as for the Higgs apply here.

Key Experimental issues to be addressed in Higgs and Top studies are sensitivity to:

- final state pT, η acceptance (especially for VBF) and resolution
- tagging efficiencies and mistag rates (c, b, top, higgs)
- id efficiencies and fake rates

Benchmarks analyses (BSM)

"Strong" SUSY:

```
    gluinos, squarks: jets + MET, s.s dileptons + jets + MET:
        M<sub>g</sub> = 12 TeV, M<sub>LSP</sub> = 100 GeV
        M<sub>g</sub> = 8 TeV, M<sub>LSP</sub> = 7.8 TeV (compressed region)
    stops: 0/I leptons + jets + MET:
        Ms<sub>top</sub> = 9 TeV, M<sub>LSP</sub> = 100 GeV
        Ms<sub>top</sub> = 5 TeV, M<sub>LSP</sub> = 4.8 TeV (compressed region)
```

Key aspects are:

- lepton pT thresholds in compressed scenarios
- MET resolution
- tracking/ calo granularity in boosted regions
- lepton id requirements in boosted leptonic top decays

Benchmarks analyses (BSM)

"Weak SUSY/ DM":

- EW-ino: 3/4 leptons + MET
- Higgsino (disappearing tracks) Ryu Sawada
- Dark Matter Phil Harris

Key experimental challenges:

- lepton id, lepton threshold in compressed regions?
- MET tails
- disappearing tracks

"Heavy Resonances":

```
- Z' \rightarrow tt, jj, ee/\mu\mu:

M_Z = 5, 30 \text{ TeV}
```

Key aspects are:

- boosted tops
- high pT electron/muon resolution

Detector design

Luminosity, Pile-Up scenari

- $L^* = 45 \text{ m}$
 - Distance between triplet and IP
 - determines overall longitudinal size of detector
- Luminosity = $[5x10^{34} 30x10^{34}]$ cm²s⁻¹

Zbynek Drasal

- low lumi, $N_{PU} = 170 (25 \text{ns})$
- high lumi, $N_{PU} = 1020 (25 \text{ns}) 204 (5 \text{ns})$

z_{vtx} resolution CPU time timing detector

better for Tracking

radiation

Ilaria Besana

Towards defining the FCChh detector Physics constraints

Physics will be more forward

- less for "high pT" physics
- more for "low pT" physics (W/Z/Higgs, top)
- in order to maintain sensitivity in need large rapidity (with tracking) and low pT coverage
- \rightarrow precision muon up to $|\eta| < 4$
- \rightarrow calorimetry up to $|\eta| < 6$
- → Can we deal with 1k pile-up will at large rapidities?

Towards defining the FCChh detector Physics constraints

Physics objects will be more boosted

Tracking:
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$

calorimeters:
$$\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$$

Zbynek Drasal

- Tracking target : achieve $\sigma / p = 10-20\% @ 10 \text{ TeV}$

Muons target: $\sigma / p = 5\% @10 \text{ TeV}$

Werner Riegler

- Keep calorimeter constant term as small as possible.

Long-lived particles live longer:

Jana Faltova
Coralie Neubuser
Tony Price

Sergei Chekanov

ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying

→ re-think reconstruction, include dE/dx?

Estel Perez Codina

Require high granularity (both in tracker and calos):

ex: $W(p_T = 10 \text{ TeV})$ will have decay products separated by $\Delta R = 0.01$

30 ab⁻¹ needed for 5σ Z' with $\sigma(p)/p = 10 \%$

Detector Baseline

Detector Baseline

see later for dedicated presentations on sub-detectors

Tracker

- $-6 < \eta < 6$ coverage
- pixel: $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, X/X₀(layer) $\sim 0.5-1.5\%$
- outer : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 30-1000 \mu m$, $X/X_0(layer) \sim 1.5-3\%$

Calorimeters

- ECAL: LArg, $30X_0$, 1.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci, 9.2 λ , r = 2.8 4.8 m (barrel)
- endcaps and fwd to be defined
- investigating Digital ECAL

Faltova
Neubuser
Price
Chekanov

Drasal

Perez Codina

Ten Kate

Da Silva

Riegler

Magnet

- central R = 5, L = 10 m, B = 4T
- forward R = 3m, L = 3m, B = 4T

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

FCC-hh reference detector

Object parameterisation for Physics

Parameterised Performance

Tracking

Delphes

(track re

17

 π^{\pm} , $p_{T}^{1} = 1 \text{ TeV}$ π^{\pm} , $p_{T}^{1} = 10 \text{ TeV}$

Parameterised Performance ECAL

FCChh Delphes

	σ(η,φ)	σ(E)/E
$0 < \eta < 2.5$	0.0125	10% / √E ⊕ 0.7%
$2.5 < \eta < 4.0$	0.025	10% / $\sqrt{\mathrm{E}} \oplus 0.7\%$
$4.0 < \eta < 6.0$	0.025	30% / √E ⊕ 3.5%

CMS Delphes

	σ(η,φ)	σ(E)/E
$0 < \eta < 3.0$	0.02	5% / √E ⊕ 0.5%
$3.0 < \eta < 5.0$	0.175 - 0.35	200% / $\sqrt{\mathrm{E}\oplus10\%}$

Parameterised Performance HCAL

FCChh Delphes

	σ(η,φ)	σ(E)/E
$0 < \eta < 2.5$	0.025	50% / √E ⊕ 3%
$2.5 < \eta < 4.0$	0.05	50% / √E ⊕ 3%
$4.0 < \eta < 6.0$	0.05	100% / $\sqrt{\mathrm{E}\oplus 10\%}$

CMS Delphes

	σ(η,φ)	σ(E)/E
$0 < \eta < 1.7$	80.0	$110\% / \sqrt{E \oplus 5\%}$
$1.7 < \eta < 3.0$	0.175	110 % / √E ⊕ 5%
$3.0 < \eta < 5.0$	0.175 - 0.35	250% / √E ⊕ 13 %

Performance Particle-flow

Parameterised Performance

muons

Parameterised Performance b-tagging

Conclusions

- Benchmarks for physics studies have been defined.
- A reference detector for preliminary studies at p p @ 100 TeV has been defined.
- The detector performance has been parameterised in Delphes.
- Detector baseline should be used as a reference point from which one can explore deviations in performance (in better or worse).
- · Tools are in place to explore the potential of the FCC-hh detector in view of the CDR

In order to follow the FCChh activities, subscribe to the e-group:

fcc-experiments-hadron

Thank you