# **Radiation Environment**

M. I. Besana, F. Cerutti, A. Ferrari, V. Vlachoudis - EN-STI-FDA W. Riegler - EP-AIO



#### FCC week, May 29-June 2, 2017, Berlin

# M.I. Besana, FCC week 2017

# Outline

- Updated detector geometry:
  - with a conceptual design for a forward shielding
- Radiation levels:
  - effect of the shielding: neutron fluence rate
  - charged particle fluence rate
  - 1 MeV neutron equivalent fluence
  - o dose

#### Alternative geometry:

- forward calorimeter split into
  "forward" and "very forward" part
- forward muon sub-detector: reduced angular acceptance, <u>but</u> space for a thicker inner iron shielding
- effectiveness quantified in terms of:
  - MeV neutron equivalent fluence in the forward tracking stations
  - charged particle fluence rates in the forward muon chambers

Conclusions & Outlooks



















FCC week 2017 Besana, Μ.Ι.

#### Shielding in the Forward Region



## **Details about the Simulation**

- **FLUKA** simulations using DPMJET-III generator
  - c-hadrons included (b-hadrons and W/Z bosons are not included)

#### Normalization:

- o non-elastic proton-proton cross section at 100 TeV of 108 mbarn
- o fluence rates [cm<sup>-2</sup>s<sup>-1</sup>] for an instantaneous luminosity of 30 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- 1 MeV neutron equivalent fluence [cm<sup>-2</sup>] and dose [MGy] for an integrated luminosity of 30 ab<sup>-1</sup>

#### Resolution:

- o inner part (R < 175 cm, z < 37 m): R x z: 5 mm x 5 cm
- external part (R > 175 cm, z < 37 m): R x z: 10 cm x 5 cm
- o forward part (R < 350 cm, 37 m < z < 47 m): R x z: 5 mm x 10 cm
- The contribution coming from the TAS has been included in this simulation
  NEW! Not included in the previous results



expected rates: up to 300 cm<sup>-2</sup>s<sup>-1</sup>, compared to ~10 cm<sup>-2</sup>s<sup>-1</sup> of the previous layout



#### Charged Particle Fluence Rate (30 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>)









FCC week 2017 Besana, Μ.Ι.











# Dose for 30 ab<sup>-1</sup>

![](_page_24_Figure_1.jpeg)

#### **Alternative Geometry**

![](_page_25_Figure_1.jpeg)

31/05/17

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

M.I. Besana, FCC week 2017

31/05/17

15

#### **Conclusions & Outlooks**

#### **Conclusions:**

- Radiation studies for the second version of FCC detector have been presented
  - the TAS contribution is taken into account
  - results have been shown in terms of:
    - neutron & charged particle fluence rates
    - long term damage: 1 MeV neutron equivalent fluence & dose
    - other quantities available not reported in this talk
  - the expected values pose challenges on detector technology, which will be highlighted in the following talks
  - Shielding strategy proposed to protect muon chambers against leakage and back-scattering from forward calo and TAS:
    - the shielding is effective, but the localized leakage points affect fluence values in the muon chambers → higher values wrt the previous layout

- An alternative geometry version has been explored with "very forward" calorimeters and a reduced muon acceptance
  - the calorimeter split is not effective in reducing the fluence in the tracking stations & it has a bad effect on the forward muon chambers
  - the shielding inside the muon chambers has instead a positive impact

#### Outlooks:

- The "very forward" calorimeter option will be dropped for future studies
- To protect forward muon tracking stations:
  - the increase of the shielding around the beam pipe will be maintained
  - a thicker forward calorimeter will be considered

# Thanks for your attention

5

## Back-up