FCChh Tracker Performance Studies

Estel Perez (CERN) on behalf of the FCChh detector working group

ΈRΝ

FCC Week, Berlin May 2017

Introduction and Outline

- Goal: show performance studies leading to changes in the FCChh tracker detector design*
- 1. Tools and validation
- 2. Pattern recognition studies
 - dependence on detector layout, material and granularity
- 3. Reconstruction of **boosted objects**
 - dependence on granularity
- 4. Flavor tagging performance
 - dependence on granularity, material, jet energy

Tools

• Different software tools were required for the various performance studies:

Т

Software	tkLayout*	LicToy	CLIC SW	SiD SW
previously used by	(CMS)	(ILC, CLIC)	(CLIC)	(SiD, CLIC)
Simulation	Fast	Fast	Full	Full
	analytic method to compute covariance matrix	full track reconstruction, outside-in	pattern recognition	full reconstruction chain
used for studying	pattern recognition	pattern recognition	boosted objects	flavor tagging
geometry	<u>v3.00</u>	<u>v3.00</u>	<u>v3.01</u>	<u>v3.02</u>

• Validated the different tools against each other

Validation of tkLayout against LiCToy

Nhits and Resolution reflects the layout structure, the two tools give consistent results

Pattern recognition studies

Pattern recognition studies

Dependence of the impact parameter resolution on the beampipe radius

Default radius: 20 mm

By increasing the beampipe radius, the very forward particles will cross the beampipe more perpendicularly and will be less affected by multiple scattering.

Moving out the innermost barrel layer by **1 cm** would **degrade** the impact parameter resolution by **45%** for very forward tracks of pT=10 GeV. \rightarrow keep radius as small as possible

Estel Perez - FCC Week 2017

Pattern recognition studies

Reducing the material budget by 50% would improve the d0 resolution by 20% (25%) for a forward track of η =3.1 and pT=10GeV (1GeV)

Pattern recognition studies

Background in the error ellipse vs granularity

bkg particles in error ellipse = Ellipse Area * Pile up * Fluence

Ellipse Area = $\frac{1}{4} \pi \sigma_{R\phi} \sigma_z \tan\theta$ Assume # Pile up interactions per bunch crossing =1100 Granularity: Assume squared pixels and single point resolution = pitch/V12

In order to have less than **0.01 background particles** per bunch crossing in the error ellipse area, would need σ =10x10µm single point resolution in the forward disks. Not possible to do pattern recognition for tracks below pT=1 GeV with this layout

at η =5.7, pT=1 GeV \rightarrow p=150 GeV

Background in the error ellipse vs layout

One can reduce the error ellipse area by adding an **intermediate disk** and thus reducing the extrapolation distance

By adding one intermediate disk, we can use σ =25x25 μ m single point resolution for the forward disks and reconstruct tracks down to pT=0.5 GeV.

Boosted particle decay

Efficiency definition

 Tracks from taus decaying too far into the detector will be impossible to reconstruct: assume we need to resolve the hits in at least 4 layers

«Acceptance»:

Fraction of **central** taus decaying before the **4th-to-last barrel layer Etau=10 TeV : 0.86**

Etau=5 TeV : 0.98 Etau=2 TeV : 0.9999 Etau=1 TeV : 1

Assume: single-hit clusters Resolved hits = distance between two particles > 2*pixel pitch (In either the Rφ(u) or Z(v) direction)

Efficiency = # resolved hit pairs / closest pair of pion hits in the 4th-to-last layer

2*pixel pitch

Efficiency vs single point resolution

Efficiency vs decay vertex position

Efficiency vs tau **decay vertex position**:

- 10 TeV "prompt" taus (decaying inside the beampipe) have ~60% efficiency only due to the small opening angle between their decay products
 - Could be improved by using higher detector granularity
- Efficiency drops in R due to tau displaced decay

No significant inefficiency for taus of E < 1 TeV

Efficiency vs **single point resolution:**

- Strong dependence on single point resolution, specially for high energy taus
- In the current design, efficiency driven by Rφ. Not much gain by improving Z resolution unless comparable to Rφ.

Estel Perez - FCC Week 2017

Efficiency vs single point resolution

- Benchmark: B-hadrons
- Acceptance: Fraction of central B hadrons decaying before the 4th-to-last barrel layer

«Acceptance»:

$$E_{b-quark}=10 \text{ TeV}: 0.88$$

 $E_{b-quark}=5 \text{ TeV}: 0.97$
 $E_{b-quark}=2 \text{ TeV}: 0.999$
 $E_{b-quark}=1 \text{ TeV}: 1$

Vertical line shows the default $10x100 \ [\mu m]$ single point resolution

(RPhi(U) single point resolution = $10 \mu m$)

Improving the single point resolution in R¢ by a factor of 2 would improve the efficiency from 55%→70% for 10 TeV b-jets

Estel Perez - FCC Week 2017

Estel Perez - FCC Week 2017

Detector model

Detector Model: based on CLIC_SiD with FCC vertex and squeezed FCC tracker detector Implemented barrel only

FCChh tracker in the CLIC_SiD detector

dijet (bb) pT(b)=50GeV

using geometry version with 3 closeby vertex layers

FCC Flavor tagging performance

central dijets , pT(quark)=50GeV

For 55% B-tagging efficiency, the background efficiency is about 1% for C-jets and 0.1% for light flavor jets

For 50% C-tagging efficiency, the background efficiency is of the order of 10%.

Reasonable performance

compared to that achieved in CLIC and LHC *

(* = see backup)

Estel Perez - FCC Week 2017

Flavor tagging – variations

Variations:

- Granularity: Use **20x20µm pitch** (instead of 25x50µm pitch) in the **3 innermost layers**
- Material Budget: using half of the material budget in all layers
- Granularity and Material Budget combined

Both variations give a 30-60% improvement in the background rejection. Combining both, gives only a moderate improvement on top of that.

FCC Flavor tagging performance

central dijets , pT(quark)=500 GeV

Somewhat worse B-tagging performance for higher pT jets

For **40%** B-tagging efficiency, the background efficiency is about 1% for C-jets and 0.1% for light flavor jets

C-tagging performance similar to 50 GeV jets

Plan to study performance at even higher pTs

Estel Perez - FCC Week 2017

Conclusions & Outlook

- Performance evaluation and optimisation tools (using fast and full simulation) are in place and validated
- Studies serve as an input for the vertex and tracker optimization
 - Need interconnecting disks between outer endcap and forward tracker, to facilitate pattern recognition
 - Boosted particle decay reconstruction strongly depends on the sensor granularity, need high granularity also in the outer layers.
 - Achieved reasonable flavor tagging performance for jets up to pT=500 GeV, showing significant dependence on granularity and material budget

Next steps:

 Perform further flavor tagging studies at higher jet pT, including evaluation of the performance for a detector layout with more barrel layers closer to the interaction point.

Flavor Tagging

50GeV – Comparison with CLIC pT(quark)=50GeV

central dijets,

ee->jj, No ISR, narrower pT spectrum, x50 more stats better single point resolution, very low material budget

Figure 53: b-tag efficiency for jets in dijet events at $\sqrt{s} = 91$ GeV with different polar angles using the double_spirals geometry.

Comparison to CMS run 2

Similar performance as CMS run 2. FCC factor of ~1.5 better at LF-rejection(FCC result does not include pile-up)

Comparison to HL-LHC

Similar performance as ATLAS HL-LHC

FCC factor of 1.5 worse at LF-rejection (for HL-LHC pile up of mu=140)

FCC Flavor tagging performance

FCC

FCC

Reasonable performance

Tagging efficiency relatively flat in jet pT above 40 GeV

Estel Perez - FCC Week 2017

Flavor tagging – variations

Variations

- Granularity
- Material Budget
- Granularity+Mat.Budget

Using **20x20µm pitch** (instead of 25x50µm pitch) in the **3 innermost layers,** or using **half of the material budget** in all layers*, improves the light flavor rejection by 60-40%.

The two modifications combined do not add up in terms of improvement in LF rejection, but they do for C background rejection

performance for central dijets of pT(quark)=50GeV

Estel Perez - FCC Week 2017

Fast Simulation Pattern recognition studies

Variation (II) vertex layers radius

Small differences in the resolution (single particle). Will become relevant when we take into account occupancy

Equidistant option is the best in η terms of pT resolution at high pT

d0 resolution dependence on the beampipe material

Baseline: beampipe X/X₀=0.00286. Reduce/increase the beampipe material by: 50%, 75%, . , 150%, 200%

Estel Perez - FCC Week 2017

of background particles in the error ellipse ?

- 1. Area of the error ellipse projected at the last endcap disk: **EllipseArea = \frac{1}{4} \pi \sigma_{R\Phi} \sigma_z \tan\theta**
- 2. Multiply by fluence at the last endcap disk

Note: In this study the upper and lower part of the disks have the same material budget and resolution

Boosted object studies

Tau samples used

Z'-> tau tau events (no ISR, taus back-to-back) with at least one 3-prong tau

Fraction of central taus decaying		
inside the beampipe		
(within R(x,y)<20mm)		

Etau=10 TeV :	0.045
Etau=5 TeV :	0.088
Etau=2 TeV :	0.201
Etau=1 TeV :	0.357
Etau=0.5 TeV :	0.586
Etau=0.2 TeV :	0.888
Etau=0.1 TeV :	0.987

While **99% of central 100 GeV taus** decay within the beampipe, only **4% of 10TeV** central taus do.

Estel Perez - FCC Week 2017

Efficiency definition (I)

- Resolve all prongs \rightarrow reconstruct all tracks \rightarrow have enough hits per track
- Assume: we need at least 3+1(backup) non-shared hits per track
- Assume: outside-in tracking
- → the hits from different prongs must be resolved in the 4th-to-last layer of the tracker

tau decay vertex position

«Acceptance»:
Fraction of central taus decaying
before the 4th-to-last barrel layer
Etau=10 TeV : 0.857
Etau=5 TeV : 0.978
Etau=2 TeV : 0.9999
Etau=1 TeV : 1

Fraction of **forward** taus decaying before the **4th-to-last barrel layer Etau=10 TeV : 0.9992**

This problem is less important in the endcaps since we have a larger lever arm

B-jets

- Similarly, study the long-lived hadrons in a B-jet
- Select B-hadrons as well as their C-hadron daughters
- For different b-jet energies, use bb dijet events in the barrel

```
pT(Bjet)=10 TeV
pT(Bjet)=5 TeV
pT(Bjet)=2 TeV
pT(Bjet)=1 TeV
pT(Bjet)=500 GeV
pT(Bjet)=200 GeV
pT(Bjet)=100 GeV
pT(Bjet)=50 GeV
```


Efficiency definition (II)

- Consider only the hits produced by the daughters of the long-lived B and C-hadrons
 - Require generator status==1
- Assume: we need to separate the closest pair of daughters
- \rightarrow Consider the closest pair of hits in the 4th-to-last layer

Efficiency vs decay vertex position

For various B-jet energies

Efficency of Bjets being resolved in layer9 with sigma 10x100[um]

For 10 TeV B-jets, with B or C-hadrons decaying before the beampipe: ~**80% efficiency** only due to the small opening angle between decay products

٠

No significant inneficiency for B-jets of Pt < 1 TeV

B jets acceptance

• B hadrons

pT(b-quark) [GeV]	Fraction of B- hadrons decaying before R=20mm	Fraction of B- hadrons decaying before R=925mm (4 th -to-last layer)
50	0.996848	
100	0.959081	
200	0.829957	
500	0.583421	
1000	0.398114	1
2000	0.275022	0.999217
5000	0.192235	0.965865
10000	0.161509	0.875244

B jets acceptance

• C hadrons

pT(b-quark) [GeV]	Fraction of C- hadrons decaying before R=20mm	Fraction of C- hadrons decaying before R=925mm (4 th -to-last layer)
50	0.991606	
100	0.92315	
200	0.719064	
500	0.407441	
1000	0.233609	1
2000	0.147122	0.997447
5000	0.113189	0.934408
10000	0.102258	0.793054

Flavor tagging using full simulation

Software chain: Summary

- **Generation**: MG5 central dijets, restricted quark pT.
- Hadronization: Pythia6. No Pile-up. Multiple interactions: off, ISR/FSR: on.
- Detector Model: CLIC_SiD with FCC vertex and squeezed FCC tracker (Option3_v02). Barrel only. Tracker outer layer R reduced from 1541mm (FCC) to 1206mm (CLIC)
- **Simulation**: FCC material budget (services included in the module)
- **Digitization**: FCC pixel sizes. Smear simulated hit position by a Gaussian of σ =pitch/V12.
- **Tracking**: Nhits>=6, chi2<10, d0<10 [mm] (under study)
- Particle flow: Pandora
- **Vertexing**: LCFIPlus. Use only PFOs in 2 kT jets R=0.5.
- Flavour Tagging: LCFIPlus. (BDT using same variables as CLIC)

Event Generation

- Event generation in MadGraph5:
 - pp->bb / cc / II (udsg) at vs=100TeV
 - restricted quark pT: Ex: 47.5 < pT(b) < 52.5 GeV</p>
 - Central eta: |η(b)|<0.05</p>
 - DR(bb)>0.4
- Samples:
 - Quark pT in GeV: 50, 100, 200, 500, 1000, 2000, 5000, 10000
 - 20k events per sample
 - 1M events for 50 & 500 GeV samples
- Hadronization in Pythia6:
 - No Pile up
 - Multiple Interaction: OFF
 - FSR: ON
 - ISR: ON

Tracking

• Tracking parameters used

MinPT=	0.2 GeV
MinHits=	6
MaxD0=	10.0 mm
MaxZ0=	10.0 mm
MaxChisq=	10.0

0.001<|ŋ|<1.5

• Tracking strategies trained with **displaced** single muon tracks (to account for missing inner hits)

Under review & optimization

Preliminary track resolution comparison

Full Sim	resolution	Full Sim	Fast Sim**
E=100GeV prompt muon $ \eta < 0.175 (\theta = 80-100 \text{ degrees})$	δρΤ/ρΤ	0.75%	0.48 %
· · · · · · · · · · · · · · · · · · ·	δd0[μm]	6.1	5.02
**Fast Sim pT=100GeV prompt muon	δz0[μm]	13.1	10.59

good enough approximation for our purposes

(remember: we have **squeezed the tracker**, and fast sim averages over a larger eta range)

Flavor Tagging

- Jets are classified in 4 categories ۲ according to the number of secondary vertices
- BDTs are trained using variables related • to: [ref]
 - track d0/z0/momentum

two vertices

one vertex

+ pseudovertex

one vertex

no vertex