Future Circular Collider Study Status and Plans

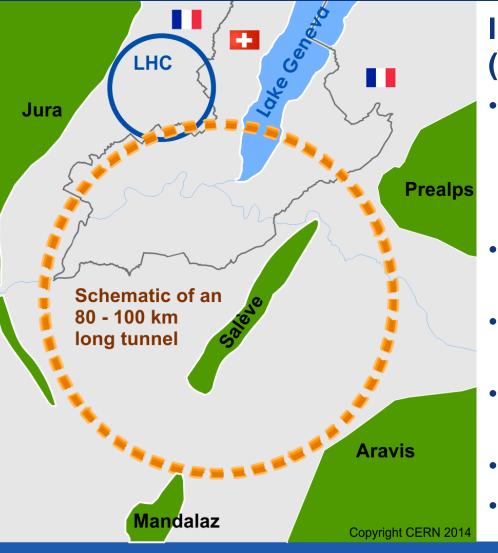
M. Benedikt and F. Zimmermann gratefully acknowledging input from FCC coordination group global design study team and all other contributors

FCC

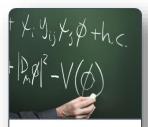
LHC

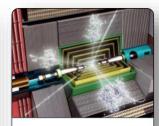
http://cern.ch/fcc

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305



- Study status and major evolution since FCC week 2016 Rome
- FCC schedule considerations
- Further study planning towards Conceptual Design Report
- EASITrain H2020 training network




Scope of FCC Study

International FCC collaboration (CERN as host lab) to study:

- *pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements
 - ~16 T \Rightarrow 100 TeV *pp* in 100 km
- ~100 km tunnel infrastructure in Geneva area, site specific
- e+e collider (FCC-ee), as potential first step
- *p-e (FCC-he) option,* integration one IP, e from ERL
- **HE-LHC** with *FCC-hh* technology
- CDR for end 2018

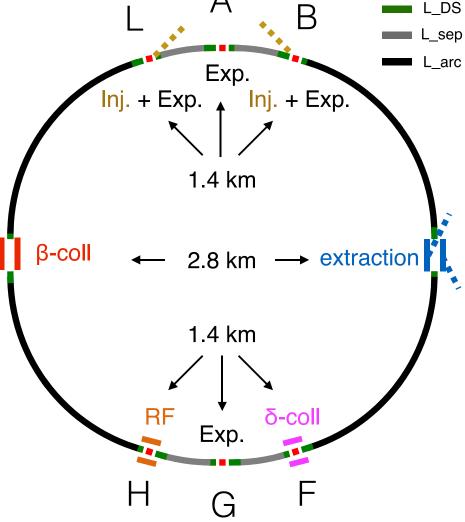
Physics Cases

FCC-pp collider parameters

parameter	FCC [.]	-hh	HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	10	D	27	14	14
dipole field [T]	16	;	16	8.33	8.33
circumference [km]	97.7	75	26.7	26.7	26.7
beam current [A]	0.5	5	1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
bunch spacing [ns]	25 25 (5)		25 (5)	25	25
synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.	4	4.6	0.33	0.17
long. emit. damping time [h]	0.5	4	1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2 (0.4)		2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		25	5	1
events/bunch crossing	170 1k (200)		~800 (160)	135	27
stored energy/beam [GJ]	8.4		1.3	0.7	0.36

FCC-ee collider parameters

parameter	Ζ	W	H (ZH)	ttbar
cm collision energy [GeV]	91	160	240	350
beam current [mA]	1400	147	29	6.4
no. bunches	71000	7500	740	62
bunch intensity [10 ¹¹]	0.4	0.4	0.8	2.1
bunch spacing [ns]	2.5 / 5.0	40	400	5000
SR energy loss / turn [GeV]	0.036	0.34	1.71	7.72
total RF voltage [GV]	0.25	0.8	3.0	9.5
long. damping time [turns]	1280	235	70	23
horizontal beta* [m]	0.15	1	1	1
vertical beta* [mm]	1	2	2	2
horiz. geometric emittance [nm]	0.27	0.26	0.61	1.33
vert. geom. emittance [pm]	1.0	1.0	1.2	2.66
bunch length with SR & BS [mm]	4.1	2.3	2.2	2.9
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	130	16	5	1.4

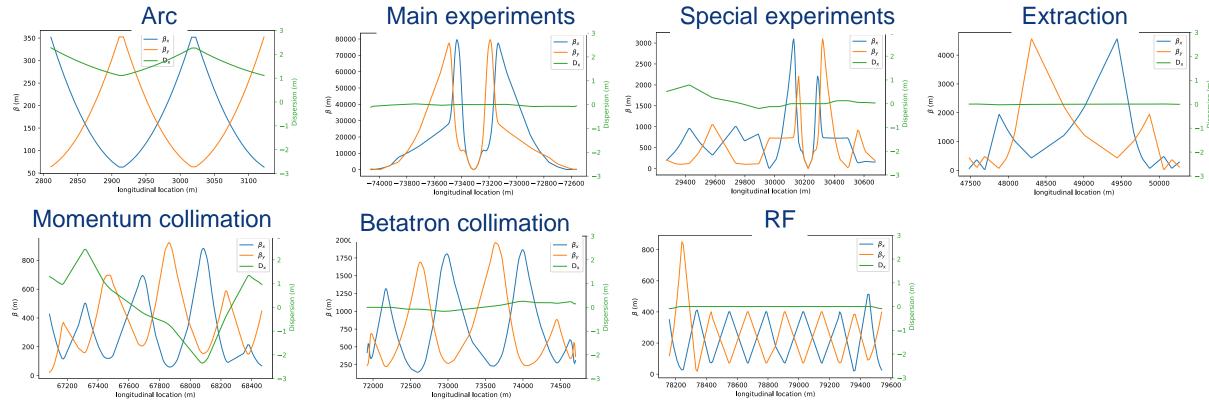


FCC-hh new layout

 Two high-luminosity experiments (A & G)

- Two other experiments combined with injection (L & B)
- Two collimation insertions
 - Betatron cleaning (J) J
 - Momentum cleaning (F)
- Extraction insertion (D)
- Clean insertion with RF (H)
- Compatible with LHC or SPS as injector

New features:

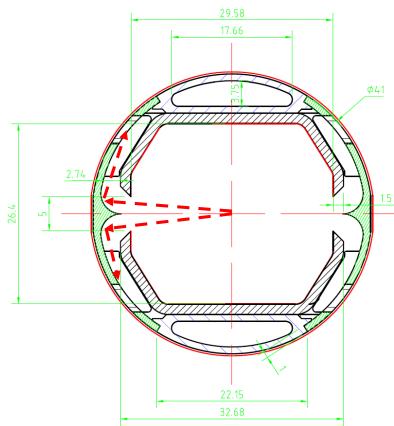

- Overall length 97.75 km
- Economy length 2.25 km
- Injections upstream side of experiments
- Avoids mixing of extraction region and high-radiation collimation areas

Taking this layout as fixed (for CDR preparation)

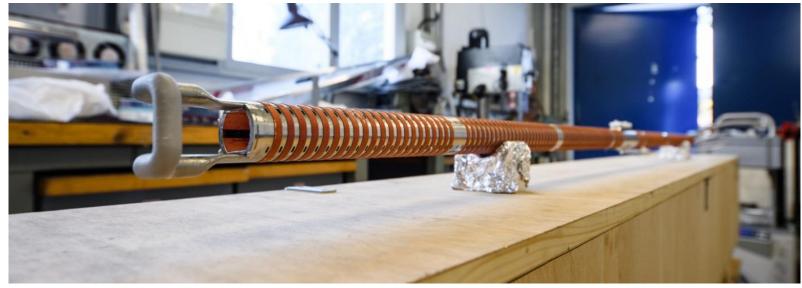
Integrated FCC-hh lattice design

Full integrated lattice exists

- Lattice imperfection studies are progressing well, injection dyn. aperture OK, @collision ongoing
- Dynamic aperture optimization in iteration with magnet design (balancing errors at injection/collision)
- Tentative specifications for magnets correctors and alignment tolerances



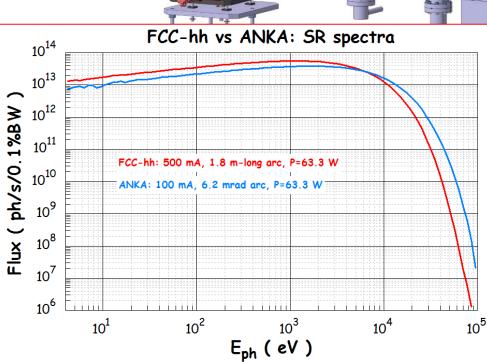
Cryogenic beam vacuum system


One of the most critical elements for FCC-hh

- Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW total power)
- Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.

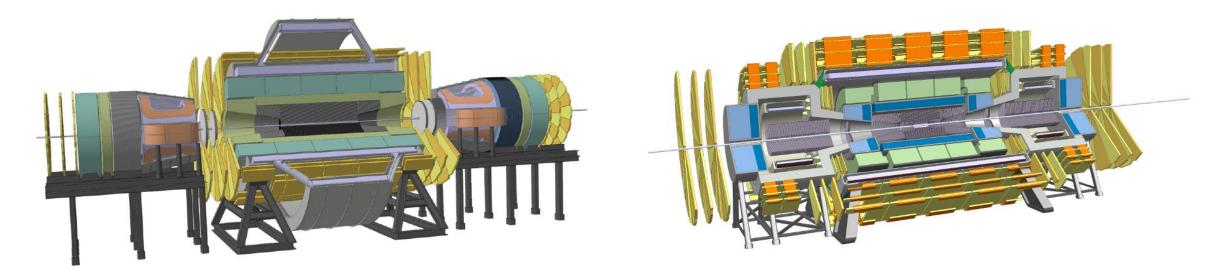
FCC Beamscreen prototype for test at ANKA:

External copper rings for heat transfer to cooling tubes



FCC-hh beam screen test @ ANKA

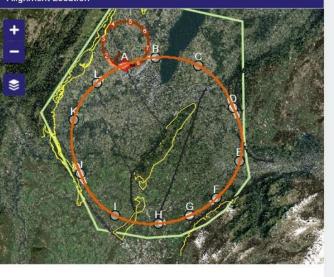
FCC-hh Beam-screen test Set-up at ANKA: Complete system installed in the ANKA ring; First beam scheduled in early June


FCC-hh detector – new reference design

6T, 12m bore solenoid, 10Tm dipoles, shielding coil

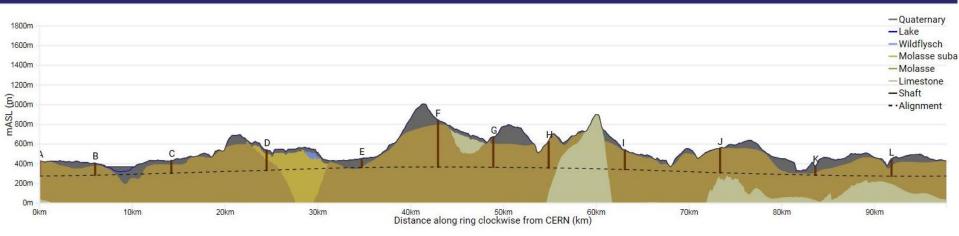
- → 65 GJ Stored Energy
- → 28m Diameter
- \rightarrow >30m shaft
- \rightarrow Multi Billion project

- 4T, 10m bore solenoid, 4T forward solenoids , no shielding coil
- → 14 GJ Stored Energy
 → Rotational symmetry for tracking !
- → 20m Diameter (≈ ATLAS)
- → 15m shaft
- \rightarrow \approx 1 Billion project



Implementation - new footprint baseline

Alig	nment	Shafts	Query		Alignment Location
Cho	ose alignm	ent option			+
V4v	ariation_v2	017-2 🗸			
Tuni	nel elevatio	n at centre:3	22mASL		
(
Grad	l. Params				8
		Azimut	n (°): -	23.5	
	Slo	ope Angle x->	(%): C	.3	
	Slo	ope Angle y-y	/(%): C	.08	
LO	AD	SAVE	C	ALCULATE	
Alig	nment cent	re			
X:	2499941		Y: 1107	760	
		CP 1		CP 2	
	Angle	Depth	Angle	Depth	
LHC	37°	49m	-40°	83m	
SPS		121m		126m	
T12		121m		126m	
T18		51m		118m	

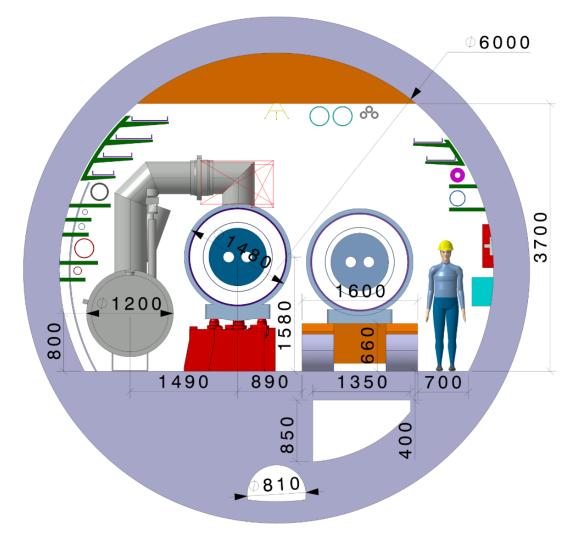

Georg	yy miei	Sected by Si		an Depins			
		Sha	aft Depth (m)			Geology	(m)
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Li
A	152						
В	121						
С	127						
D	205						
Е	89						
F	476						
G	307						
н	266						
Т	198						
J	248						
к	88						
L	172						
Total	2449	66	0	492	1892	0	

Optimisation in view of accessibility surface points, tunneling rock type, shaft depth, etc.

Tunneling

Molasse 90%, • Limestone 5%. Moraines 5%

Alignment Profile

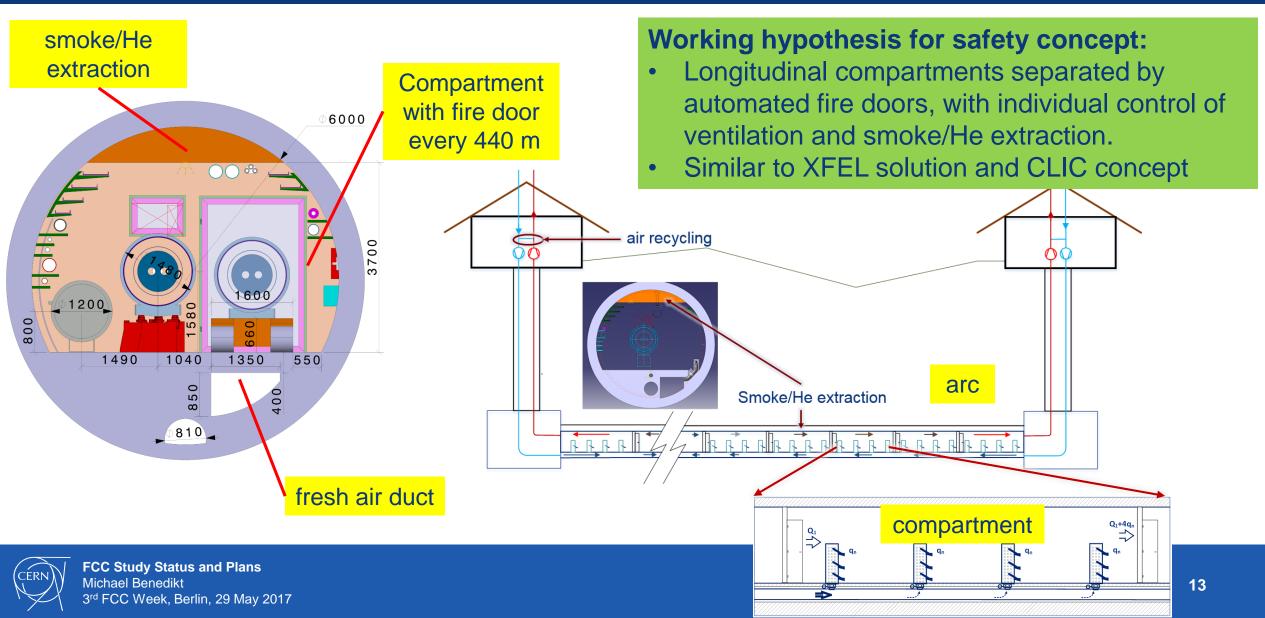

Geology Intersected by Tunnel Geology Intersected by Section

Shallow implementation

- ~ 30 m below lakebed
- Reduction of shaft ۲ length and technical installations
- One very deep shaft **F** (RF or collimation), alternatives being studied, e.g. inclined access

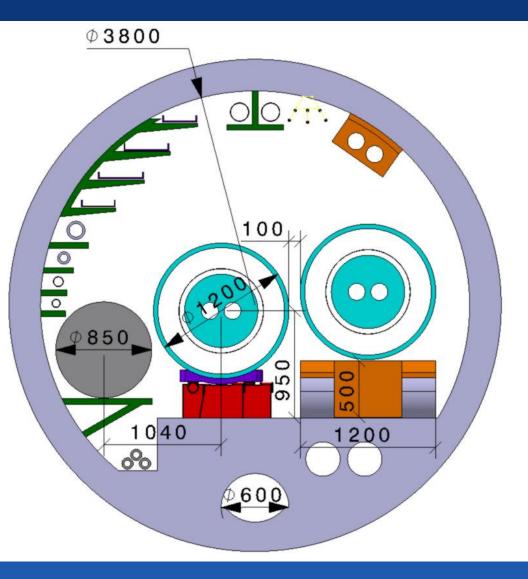
FCC-hh integration

Basic layout following LHC concept


- 6 m inner tunnel diameter
- Main space allocation:
 - 1200 mm cryo distribution line (QRL)
 - 1480 mm installed cryomagnet
 - 1600 cryomagnet magnet transport
 - >700 mm free passage.

FCC Study Status and Plans Michael Benedikt 3rd FCC Week, Berlin, 29 May 2017 EuroCirCol

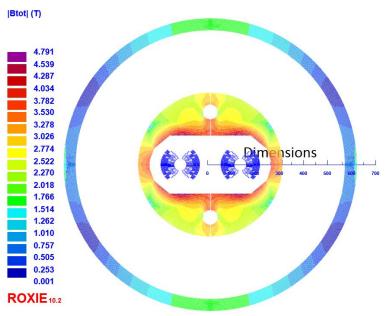
FCC-hh tunnel safety concept



HE-LHC integration aspects

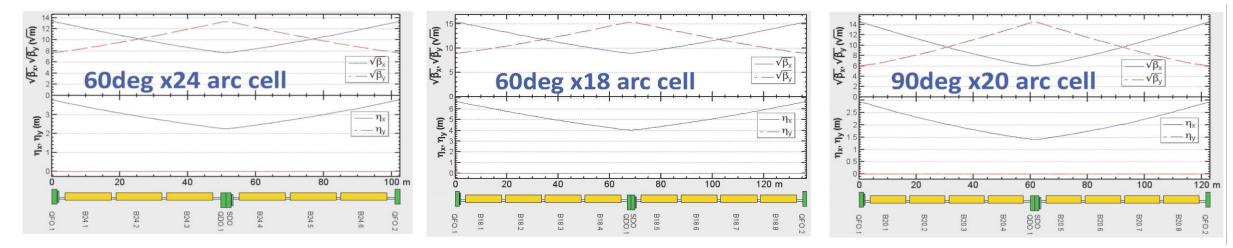
Present working hypothesis for HE LHC design: No major CE modification on machine tunnel and caverns


- Similar geometry and layout as LHC machine and experiments
- Due to 16 T dipole field and increased cryogenic load, magnet cryostat and cryo distribution line (QRL) larger than for LHC.
- Challenges for tunnel integration and QRL & 16 T cryostat design.
- Maximum magnet cryostat external diameter compatible with LHC tunnel: 1200 -1250 mm
- Classical 16 T cryostat design based on LHC approach gives ~1500 mm diameter!



Design strategy: develop a single 16 T magnet, compatible with both HE LHC and FCC-hh requirements:

- Goal is reduction of external diameter to ~1200 mm
- Options und consideration:
 - Allow stray-field and/or cryostat as (partial) return-yoke
 - Active compensation with (simple) shielding coils
 - Optimization of inter-beam distance (compactness of coils)
 - (QRL integrated in magnets, → negative impact on integral field because of longitudinal space required for service module (5%))
- → Smaller diam. also relevant for FCC-hh cost optimization
 → Design optimization for specific project after decision

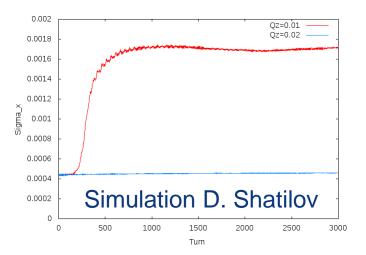

Only magnetic elements shown

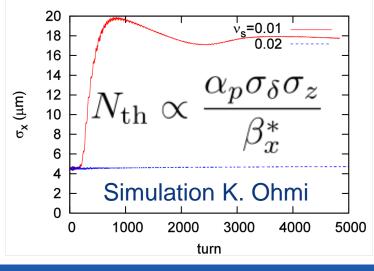
Description	ID in mm	OD in mm
Iron yoke	-	600
Aluminium shrinking cylinder	600	740
Stainless steel He tight shell	740	760
Al radiation shield	934	940
Vacuum vessel (magnetic steel)	1120	1220

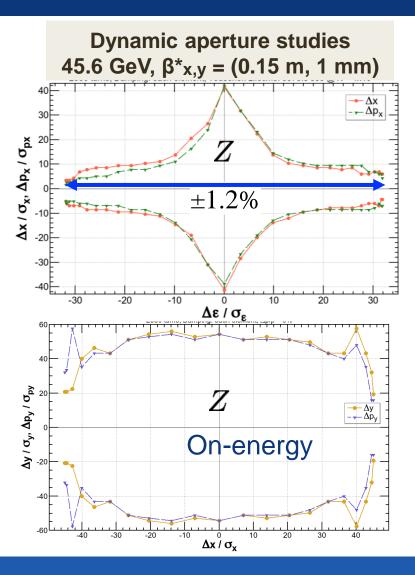
HE-LHC optics design work

Studying various arc-cell options, optimizing dipole field, quadr. & sext. strengths, geometry & dynamic aperture, aperture requirements, injection energy, etc.

	24 x 60 deg	18 x 60 deg	20 x 90 deg
dipole length, m	13.56	14.1	12.39
number of dipoles	1280	1280	1424
dipole field, T	16.3	15.68	16.04
cell quad gradient, T/m	289.5	215.9	340.0

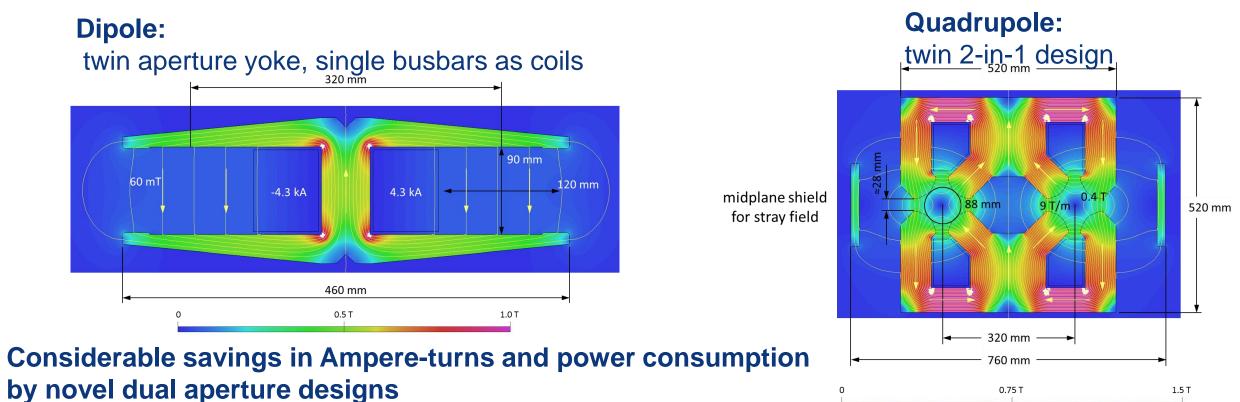





FCC-ee new optics baseline

Motivations for optics changes since Rome:

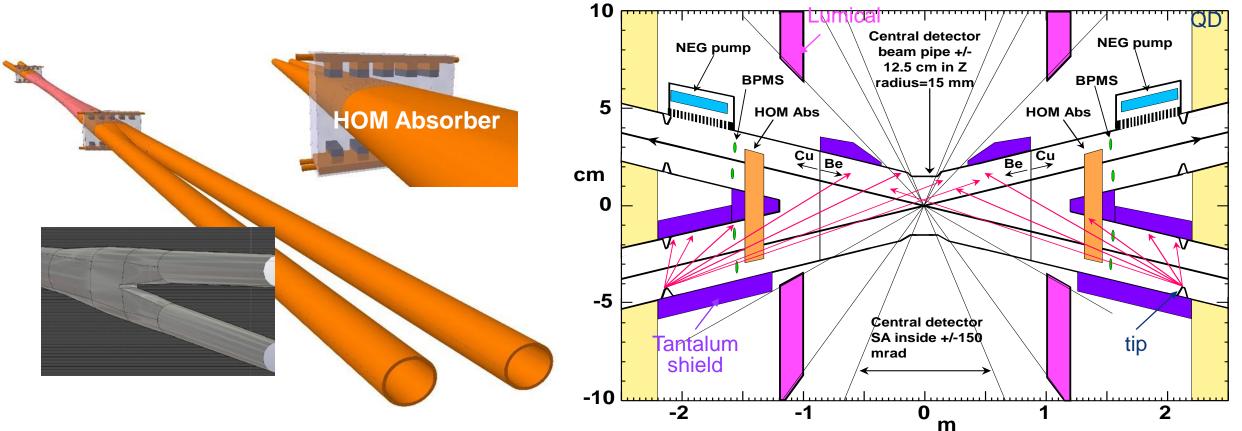
- Mitigation coherent beam-beam instability at Z working point
 - Smaller βx*
 - 60°/60° cell in the arc (larger emittance and momentum compaction), also mitigates microwave instability
- Fitting ee layout to the footprint of the new FCC-hh layout
- Adapt optics for the "Twin Aperture Quadrupole" scheme for arc quadrupoles



FCC-ee dual aperture main magnets h ee he

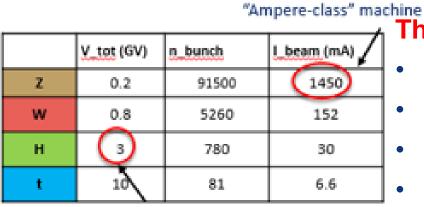
Prototyping launched of main dipole and quadrupole magnets (~1 m units)

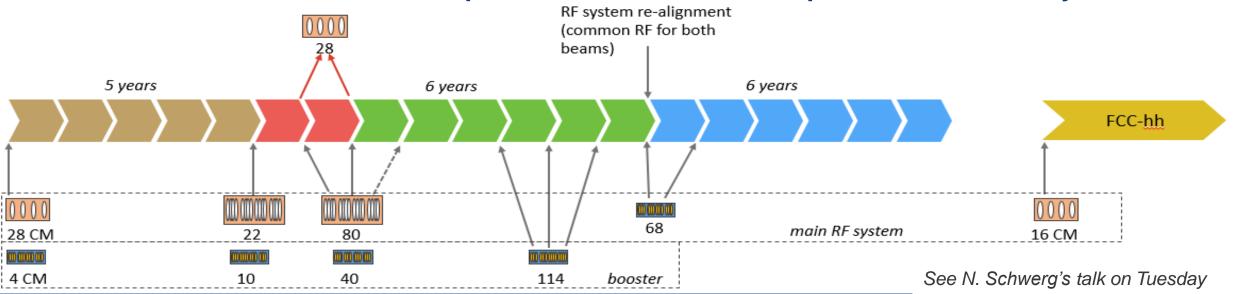
Power consumption twin quad: 22 MW at 175 GeV with Cu coil (half of single-aperture quads) and power consumption twin dipole: = 17 MW at 175 GeV with AI bus bar


1.5 T

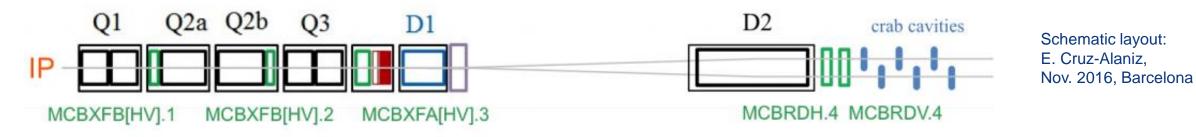
0.75 T

FCC-ee MDI optimisation

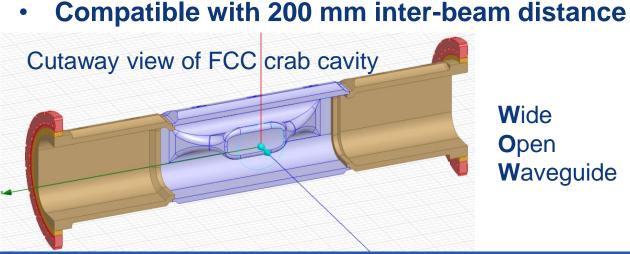

- Detailed IR design, beam pipe diameter 3 cm throughout, symmetric final focus, L* = 2.2 m
- Ta shield 1 cm, SR mask tips, 5μm Au in central section to cope with SR at high energy
- Design of HOM absorber to avoid trapped modes in central chamber



FCC-ee RF staging scenario


"high gradient" machine

- Three sets of RF cavities to cover all options FCCee & Booster:
 - Installation sequence comparable to LEP (≈30 CM/shutdown)
 - high intensity (Z, FCC-hh): 400 MHz mono-cell cav, ≈ 1MW source
- high energy (H, t): 400 MHz four-cell cavities, also for W machine
- booster and t machine complement: 800 MHz four-cell cavities
- Adaptable 100MW, 400MHz RF power distribution system

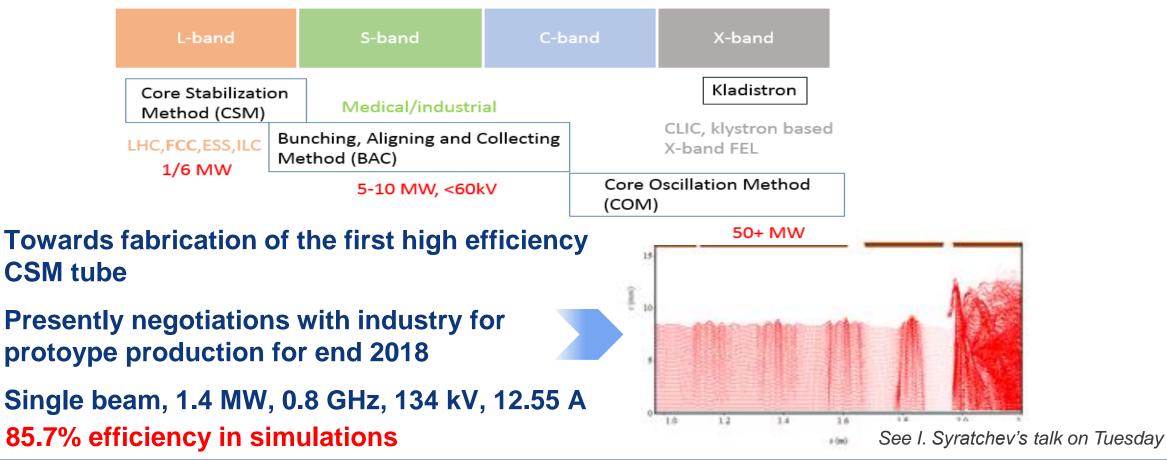


Nb/Cu crab cavity for FCC-hh / HE-LHC

- Performance of both HE-LHC and FCC-hh phase 2 based on crab cavities!
 - Development of compact Nb/Cu SC crab cavity based on ridged waveguide resonator
 - Low longitudinal and transverse impedances, provides natural damping for HOMs

Wide **O**pen Waveguide

	FCC-hh
RF frequency [MHz]	400
Total voltage V [MV]	18 (uncertainty ±20%)
Available length [m]	20
Beam separation [mm]	250 (maybe 204 soon)
Average beta in the ring [m]	(339+67)/2 = 203
Beta* [m]	0.3
Crossing angle [urad]	89
Beta at CC location [m]	10100 ÷ 10900

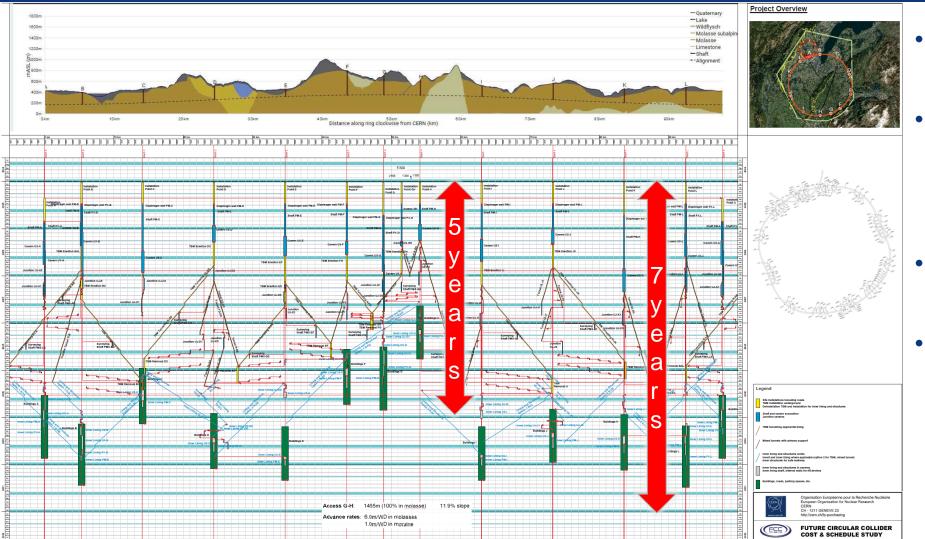


h ee he

Efficient klystron technology

 Development of new klystron bunching technologies to increase RF power production efficiency to almost 90%, was initiated at CERN in 2013 (HEIKA), essential for FCC-ee

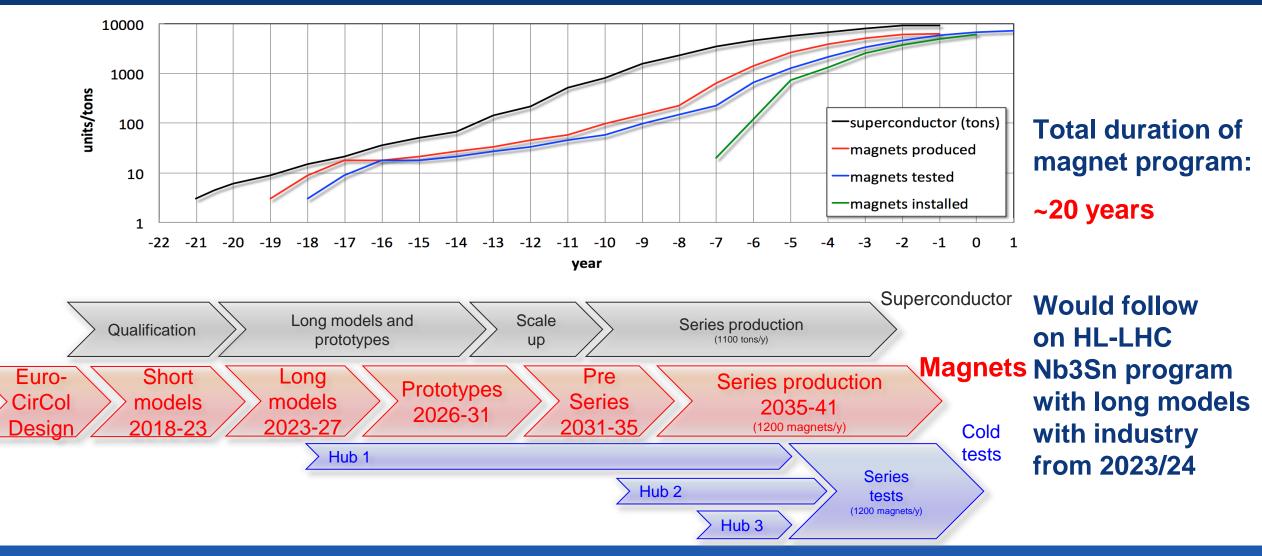
۲



FCC Study Status and Plans

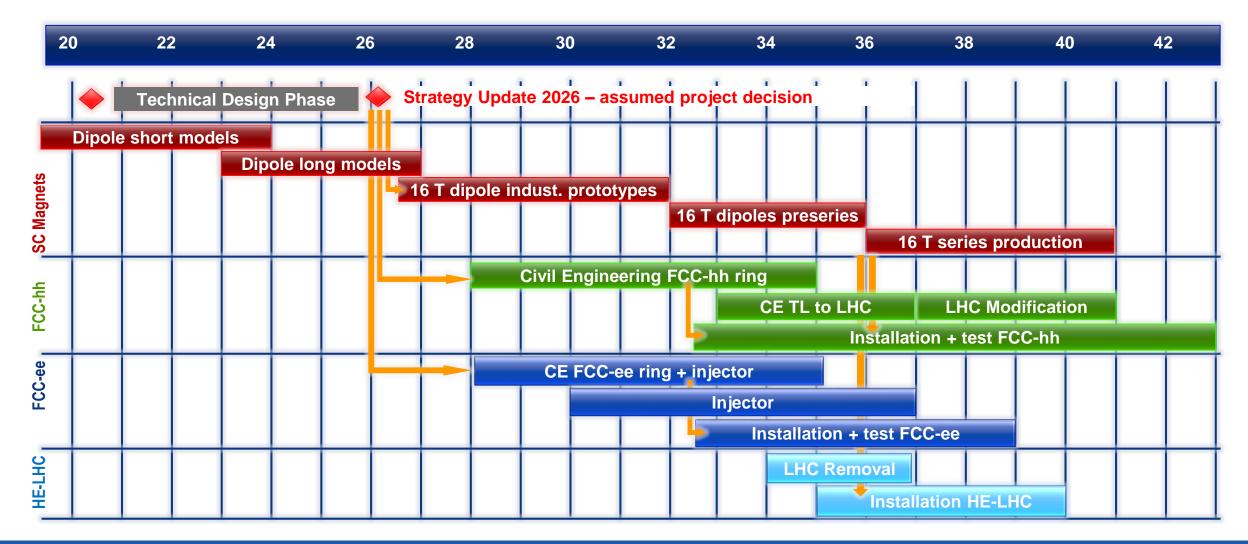
3rd FCC Week, Berlin, 29 May 2017

Michael Benedikt


CE schedule studies

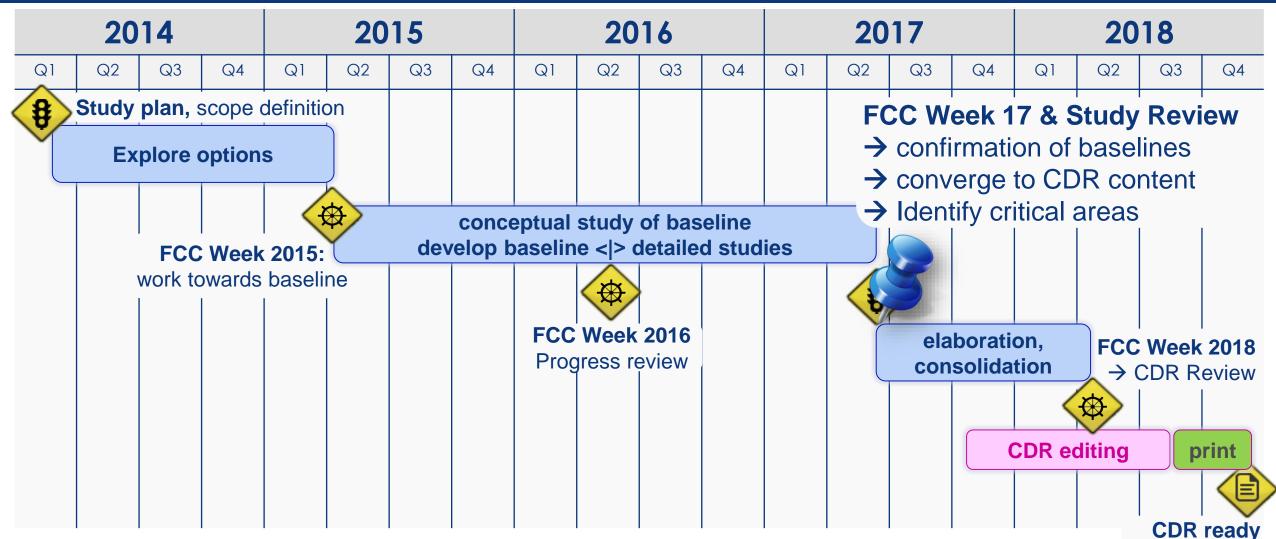
- CE and schedule studies with consultants
- First sectors can be available after 4.5 to 5 years for Technical Infrastructure install.
- Total CE duration about 7 years
- Next steps: combination with logistics considerations for TI and machine installation for overall schedule optimization

16 T magnet R&D schedule



h ee he

EurCirCol


Draft Schedule Considerations

CDR Study Timeline

FCC Advisory Committee

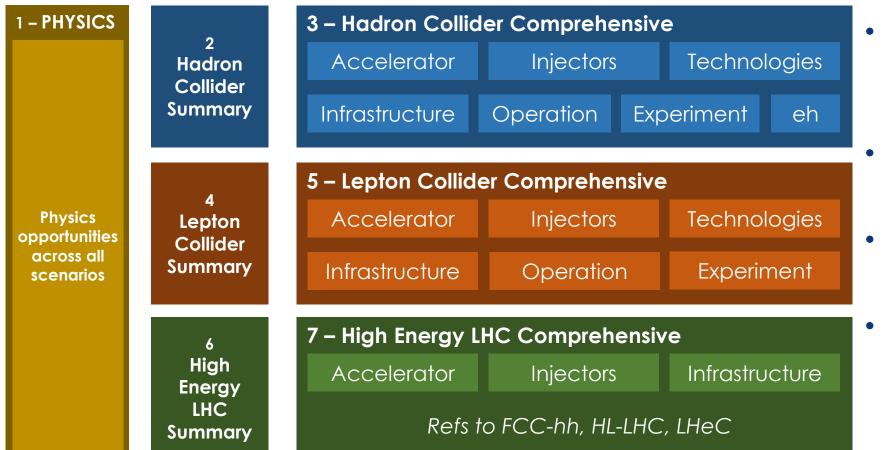
- IAC composition to cover all study areas, 17 members
- Important role as expert review committee for study and CDR preparation

	FCC Interna	tional Advis	FCC International Advisory Committee							
Chair	Dissertori	Guenther	ETHZ	СН						
	Diemoz	Marcella	INFN	IT						
Dhysics	Egorychev	Victor	ITEP	RU						
Physics	Herten	Gregor	U. Freiburg	GE						
Experiments	Quigg	Chris	FNAL	US						
	Parker	Andrew	U. Cambridge	UK						
	Assmann	Ralph	DESY	GE						
Accelerator	Biscari	Caterina	ALBA-CELLS	ES						
Design	Fischer	Wolfram	BNL	US						
	Shiltsev	Vladimir	FNAL	US						
	Lebrun	Philippe	JUAS	FR						
	Minervini	Joe	MIT	US						
Technology	Mosnier	Alban	CEA	FR						
and	Ross	Marc	SLAC	US						
Infrastructure	Seidel	Mike	PSI	СН						
	Watson	Tim	ITER	ITER						
	Yamamoto	Akira	КЕК	JP						

Study reviews towards CDR

- FCC week for presentation of information, followed by executive review session to discuss key issues.
- FCC week Berlin & 29/30 June @ CERN.
- FCC week 2018 (9-13 April 2018, tbc.) + mid-May @CERN.

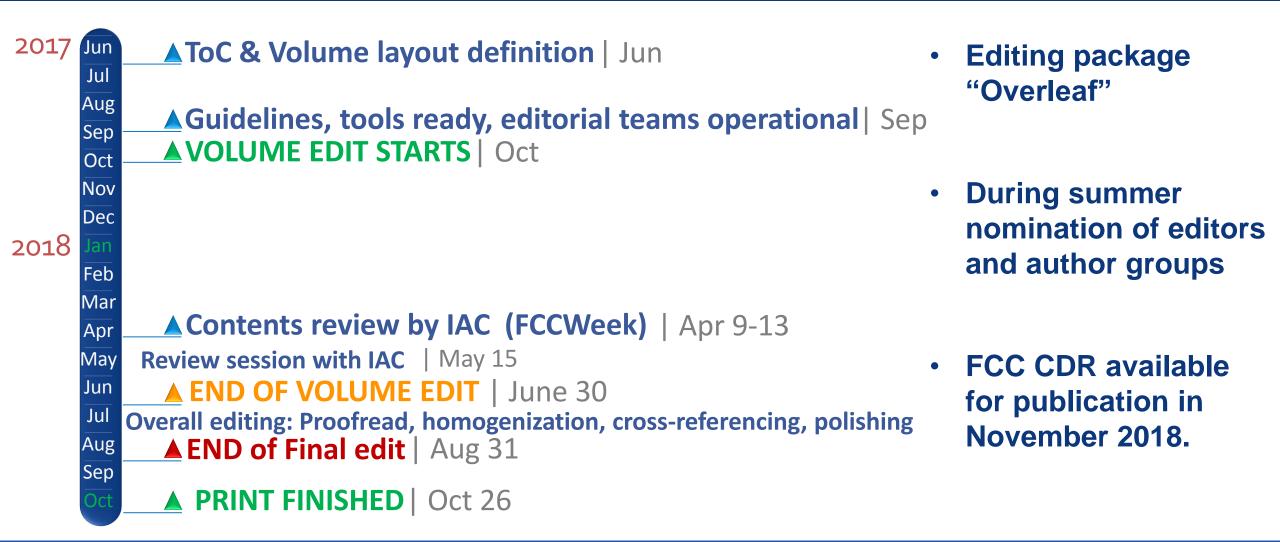
FCC Week Program


	Tuesda	ıy (30.5)		Wednesday (31.5)				Thursday (1.6)				
FCC-hh machine design review Design (1)	Conductor Development Program (1)	FCC-ee physics & experiment review Run plan and SM precision measurements	SRF Recent designs and progress	FCC-hh machine design: SppC and selected topics	16 T magnets review EuroCirCol (1)	FCC-hh review Physics potential of FCC-hh	FCC-ee review Optics & instrumentation		Special technologies Beam vacuum	I&O review CE, electricity, ventilation, logistics, transport	FCC-ee Beam dynamics	FCC-hh experiment review Calorimetry & trigger
R. Aleksan (CEA)	A. Ballarino (CERN)	G. lacobucci (UNIGE)	R. Rimmer (JLAB)	A. Faus-Golfe (CNRS)	E. Todesco (CERN)	J. Lykken (FNAL)	J. Seeman (SLAC)		F. Perez (ALBA)	C. Prasse (FIML)	B. Holzer (CERN)	B. Heineman (DESY)
	Coffee	Break				Coffee Break			Coffee Break			
FCC-hh machine design review Design (2)	Conductor Development Program (2)	FCC-ee physics & experiment review Higgs, top and flavour	SRF Materials	FCC-hh machine design: Selected topics	16 T magnets review EuroCirCol (2)	Common experiment software	FCC-ee review Machine Detector Interface		Special technologies Other directions for R&D	16 Tesla magnets US Programme	FCC-ee review Injector	FCC-hh experiment review Physics performance
F. Cerutti (CERN)	C. Senatore (UNIGE)	D. Bortoletto (UOXF)	V. Palmieri (INFN LNL)	O. Boine- Frankenheim (TU Darmstadt)	A. Zlobin (FNAL)	P. Allport (Uni Birmingham)	K. Oide (KEK)		A. Ryazanov (Kurchatov)	P. Vedrine (CEA)	I. Papaphilippou (CERN)	A.Etienvre (CEA)
	Lu	nch		Lunch			International Advisory Committee (closed session)	Advisory nittee (closed (closed			EuroCirCol mid- term review (closed session)	
					1			G. Dissertori (ETH)				R. Aleksan (CEA)
FCC-hh machine design review Beam performance and specifications	Conductor Development Program (3)	FCC-ee physics & experiment review Direct discovery & detectors	SRF review RF system concepts and requirements	Special technologies review FCC-hh beam handling	16 T Magnets Models & Technology ERMC RMM-Wound Conductor	FCC-hh experiment review Detector requirements & concepts	FCC-ee review Energy calibration & polarization	Economic impact of CERN colliders (1)	Special technlogies Other Magnets	I&O review Cryogenics	FCC-he review Accelerator & interation region	Comon detector technologies
M. Migliorati (INFN)	D. Larbalestier (Florida State Uni)	L. Linssen (CERN)	J. Zhai (IHEP)	M. Sullivan (SLAC)	S. Gourlay (LBL)	D. Charlton (Uni Birmingham)	E. Levichev (BINP)	M .Florio (Uni Milano)	E. Fischer (GSI)	D. Delikaris (CERN)	R. Assmann (DESY)	G. Tonelli (INFN)
	Coffee Break			Coffee Break						Coffee	Break	
FCC-hh machine design review Injectors	Conductor: Electromechanical characterization	FCC-ee physics & experiment review Synergies & complementarities	SRF review Directions for R&D	Special technologies review Recent design & progress	Other Magnets	FCC-hh experiment review Magnet & tracking	FCC-ee review Collective effects & top-up injection	Economic impact of CERN colliders (2)	I&O review Operation, reliability, safety	16 Tesla magnet review Status towards the CDR	FCC-eh: Physics	HE LHC design
P. Spiller (GSI)	M. Eisterer (TU Vienna)	J. Ellis (Uni London)	S. Posen (FNAL)	S. Casalbuoni (KIT/ANKA)	T. Ogitsu (KEK)	N. Wermes (Uni Bonn)	M. Biagini (INFN)	M .Florio (Uni Milano)	Ll. Mirales (CERN)		M. D'Onofrio	A. Seryi (JAI)

Review Information

- All sessions marked in red are earmarked for review
- Also EuroCirCol mid-term review integrated in FCC week 2017 Reviewer: Prof. O. Kester

Conceptual Design Report


- Required for end 2018, as input for European
 Strategy Update
- Common physics summary volume
- Three detailed volumes FCChh, FCCee, HE-LHC
- Three summary volumes FCChh, FCCee, HE-LHC

n ee he

CDR planning

H2020 EASITrain ITN

European Advanced Superconductivity Innovation and Training Network

- Selected for funding by EC in May 2017
- > 15 Early Stage Researchers (not yet PhD) paid for 36 months.
- Start: 1. October 2017, Duration: 48 months
- Timeline and events:
 - Kick-off meeting: 5. 6. September 2017 at CERN
 - All job applications until 1. October 2017
 - All jobs filled until 31. December 2017
 - Introduction Workshop at CERN, 11. 23. March 2018
 - EASISchool 1 in Vienna, Austria, 19. 31. August 2018

EASITrain Topics

- SC wires at low temperatures for magnets (Nb₃Sn, MgB₂, HTS)
- Superconducting thin films for RF and beam screen (Nb₃Sn, TI)
- Electrohydraulic forming for RF structures
- Turbocompressor for Nelium refrigeration
- Magnet cooling architectures

Collaboration & Industry Relations

hh ee he

Summary and outlook 2017/18

- Consolidate design baselines for FCC-hh, FCC-ee, HE-LHC
- Comprehensive parameter document for FCC-eh was recently published
- 2018 FCC physics workshop: 15-19 Jan. 2018, CERN (FCC physics WS in Jan. 2017 (>200 participants)).
- Advance further on HW developments (magnets, SRF, special technologies)
- Develop implementation scenarios, schedules and cost estimates
- Define author/contributor teams for CDR core parts
- Prepare, assemble and edit CDR contributions
- FCC Week in spring 2018 will review CDR draft contents
- Presentation of printed CDR at the end of 2018

Have an interesting and productive week!

