Energy collimation system insertions and performance evaluation tools

Outline

- The “old” energy collimation system
- The tools for performance evaluation
- The “current” energy collimation system
- The plans for the “new” energy collimation system
FCC parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>LHC V6.503</th>
<th>HL-LHC</th>
<th>FCC V6</th>
<th>FCC V8</th>
<th>Scale LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length [m]</td>
<td>26658</td>
<td>26658</td>
<td>100171</td>
<td>97749</td>
<td>x3.76/3.67</td>
</tr>
<tr>
<td>Top beam energy [GeV]</td>
<td>7000</td>
<td>7000</td>
<td>50000</td>
<td>50000</td>
<td>x7.14</td>
</tr>
<tr>
<td>Bunch count [25 ns]</td>
<td>2808</td>
<td>2808</td>
<td>10600</td>
<td>10600</td>
<td>x3.77</td>
</tr>
<tr>
<td>Bunch particle count [10^{11}]</td>
<td>1.15</td>
<td>2.2</td>
<td>1</td>
<td>1</td>
<td>x0.87</td>
</tr>
<tr>
<td>Stored beam energy [GJ]</td>
<td>0.362</td>
<td>0.693</td>
<td>8.4</td>
<td>8.4</td>
<td>x23.2</td>
</tr>
<tr>
<td>Normalized emittance [mmrad]</td>
<td>3.75</td>
<td>2.5</td>
<td>2.2</td>
<td>2.2</td>
<td>x0.59</td>
</tr>
<tr>
<td>Luminosity [10^{34} cm$^{-2}$ s$^{-1}$]</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>x5</td>
</tr>
<tr>
<td>Beam-collimator interaction [GeV]</td>
<td>114.62</td>
<td>114.62</td>
<td>306.32</td>
<td>306.32</td>
<td>x2.67</td>
</tr>
</tbody>
</table>

FCC week

29 May-2 June 2017
The old energy collimation system

Full ring V6 optics
The old energy collimation system

The energy collimation system optics V6
The old energy collimation system

The energy collimation system V6 aperture model
The old energy collimation system

The energy collimation system V6 aperture model
The old energy collimation system

Full ring loss map V6 on-momentum with Merlin
The old energy collimation system

Energy collimation loss map V6 on-momentum with Merlin
The old energy collimation system

Full ring loss map V6 off-momentum with Merlin
The old energy collimation system

Full ring loss map V6 off-momentum with Merlin
The tools for performance evaluation

A number of codes currently are used for collimation simulations:
- SixTrack/K2
- Merlin
- FLUKA
- BDSIM (Geant4)

Are differences in codes due to tracking or to physics?
Implement all physics models in SixTrack so that the tracking, input files, post-processing will be the same:
- SixTrack is a fast symplectic beam tracking code
- Extensively used for tracking studies at CERN for many years.
- Written in fortran and open source.

A complete simulation study with each model and comparison has been performed with a single jaw test
The tools for performance evaluation

Loss maps:

- We observe that each code produces different output distributions after interactions with a collimator
- Merlin How important it this to the operation and effectiveness of the collimation system?
- Test with the current FCC-hh lattice
- 200 turns, 12.8 million protons at 50 TeV, with a horizontal betatron halo distribution - a ring in \((x,x_p)\) that just touches the horizontal primary collimator jaw, normal distribution cut at 3 sigma in \((y,y_p)\)

Loss maps show the distribution of losses around an accelerator ring. In an ideal world all losses will be confined to the collimators, and any normal conducting magnets. Losses into superconducting magnets are to be avoided.
The tools for performance evaluation

Relative loss counts in each named region relative to the default K2 scattering in SixTrack

<table>
<thead>
<tr>
<th>Region</th>
<th>Merlin</th>
<th>FLUKA</th>
<th>G4 FTFP</th>
<th>G4 QGSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>β TCP</td>
<td>1.00</td>
<td>1.01</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>β TCSG</td>
<td>1.00</td>
<td>1.27</td>
<td>1.45</td>
<td>1.32</td>
</tr>
<tr>
<td>β TCLA</td>
<td>0.92</td>
<td>1.50</td>
<td>2.37</td>
<td>1.91</td>
</tr>
<tr>
<td>β DS1</td>
<td>0.51</td>
<td>0.57</td>
<td>0.68</td>
<td>0.066</td>
</tr>
<tr>
<td>β DS2</td>
<td>0.44</td>
<td>0.45</td>
<td>0.52</td>
<td>0.032</td>
</tr>
<tr>
<td>β DS3</td>
<td>0.41</td>
<td>0.43</td>
<td>0.51</td>
<td>0.027</td>
</tr>
<tr>
<td>β DS4</td>
<td>0.41</td>
<td>0.45</td>
<td>0.47</td>
<td>0.086</td>
</tr>
<tr>
<td>δ TCP</td>
<td>0.45</td>
<td>1.39</td>
<td>1.12</td>
<td>0.69</td>
</tr>
<tr>
<td>δ TCSG</td>
<td>0.49</td>
<td>1.36</td>
<td>1.24</td>
<td>0.79</td>
</tr>
<tr>
<td>δ TCLA</td>
<td>0.51</td>
<td>1.3</td>
<td>1.22</td>
<td>0.92</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1.05</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

- Qualitatively there is an excellent agreement between each code’s loss map
- This gives good confidence in our simulation tools
- When performing a more detailed quantitative comparison this changes
We can now run our simulations with more confidence of the loss locations - all codes generally agree in loss locations, differences are mostly in the magnitude of the losses.

Therefore we know where to focus shielding efforts.

Take care when using simulation tools, they may give unexpected results - see differences between geant4 physics lists.

Always get a second opinion.

More data input needed from the particle physics side.

Detailed information on IPAC17 WEOBA1
The current energy collimation system

Full ring V8 optics
The current energy collimation system

Energy collimation loss V8 optics
The current energy collimation system

Full ring loss map V8 on-momentum

FCC week
The current energy collimation system

Energy collimation and IPG loss map V8 on-momentum
The current energy collimation system

Energy collimation loss map V8 on-momentum
The current energy collimation system

Full ring loss map V8 on-momentum wo/w DS collimators
geant4 FTFP_BERT
The current energy collimation system

Betatron collimation loss map V8 on-momentum wo/w DS collimators geant4 FTFP_BERT
The current energy collimation system

Full ring loss map V8 off-momentum

FCC week

29 May-2 June 2017
The current energy collimation system

Energy collimation and IPG loss map V8 off-momentum
The current energy collimation system

IPG loss map V8 off-momentum
The current energy collimation system

On-going work:

- Finishing the energy collimation loss maps wo/w DS collimators
- Off-momentum loss maps
- Optimisation of phases advances and collimator locations
- Fermilab will be working on this subject over the upcoming months
The plans for the “new” energy collimation system

- The LHC collimation system has been designed with many compromises because a “predefined” tunnel

- The current FCC-hh energy collimation system is a scaled version of the LHC and present the same problems

- The new proposed solutions will require some innovative solutions

- FCC being design from the scratch there is quite some opportunity for improved collimation system: new magnet designs, strong dogleg bends, combined betatron-energy systems with less collimators and tighter phase space coverage,…
Thank you to the many people involved.

Some material has been taken from:

R. Assmann (FCC week 2015)…