FCC-hh impedances and instabilities

O. Boine-Frankenheim (for EuroCirCol Task 2.4)

D. Amorim, S. Arsenyev, L. Mether, B. Salvant, D. Schulte (CERN)
D. Astapovych, U. Niedermayer, P. Krkotic (TU Darmstadt)
V. Kornilov (GSI)
B. Riemann (TU Dortmund)
FCC-hh vs LHC: Beam stability

Growth rate for transverse instabilities: \[\tau^{-1} = \text{Im}(\Delta \Omega) \propto \frac{q^2 N}{m\gamma} \hat{\beta} \Re Z \]

- Larger circumference (5:1) -> lower frequency: 1 kHz vs 8 kHz
- Smaller screen diameter (2:3) -> larger impedance (factor 3), e-cloud density ?
- 20 W/m synchrotron radiation (100:1) -> photo electrons
- Screen temperature: 50 K (5:2), maximum field 16 T (2:1) -> changed conductivities
- Larger average \(\beta \)-function (2:1) -> growth rates
- Smaller beams (1:3) -> weaker Landau damping, e-cloud thresholds ?
- LHC-like bunches and 25 ns spacing (1:1)
FCC beam screen and impedance

Betatron side-bands are at 1-2 kHz

Vertical

\[f_\bot = (n - Q_x) f_0 \]

- SIBC
- Full
- Im(Z)

Material
- Cu, SS

Cu thickness [μm]
- 300

Laser/a-C coating [μm]
- 1-10

Resistive wall instability:

\[
\frac{1}{\tau} \approx \frac{M q I_b \omega_0}{4 \pi m \gamma_0 c^2 B_f} \hat{\beta}_\bot \Re[Z(\omega_\bot)]
\]

High-frequency parts and coatings treated separately.

At 3 TeV: resistive wall instability ≈ 100 turns => feedback (+ octupoles) required!
Landau damping: Octupoles

The expected coherent tune shifts in FCC are similar to those in LHC. The total octupole power should be ≈ 20 times stronger: energy, amplitudes, β-functions.

Blue: ΔQ_{coh} – Damping as in LHC. 3554 Octupoles.

Green: enough damping for the (●) included impedances. 2686 octupoles.

Black: $N_{MO} = N_{MQ} = 814$

Same damping rates also for $k>0$

Octupoles vs. RFQ: Simulations indicate that the RFQ requires larger tune spreads.

See V. Kornilov, Wednesday talk.
HTS screen coating for impedance reduction

Potential impedance reduction by factor 10!

Steel beam screen:
\[\kappa = 180 \text{ MS/m} \]
Thickness: 1 mm

YBCO coating:
\[\kappa_{\text{YBCO}} = 1.37 \text{ MS/m} \]
Thickness: 1 \(\mu \)m

Copper coating:
\[\kappa = 6 \text{ GS/m} \]
Thickness: 300 \(\mu \)m

See poster: Patrick Krkotic

See poster by Francis Perez
HTS coating: Effect on the magnetic field

Larger impedance at high frequencies for large magnetic fields (16 T.)

\[\rho_{\text{eff}} = \rho_{\text{fl}} + \rho_{\text{TFM}} \]

\[\rho_{\text{fl}} = \rho_{\text{ns}} \frac{B_0}{B_{c2}} \frac{\omega^2 + i\omega \omega_{\text{dep}}}{\omega^2 + \omega_{\text{dep}}^2} \]

\[\rho_{\text{TFM}} = \frac{1}{\kappa_n - i\kappa_{\text{sc}}} \]

\[Z_s = (1 + i) \sqrt{\frac{\mu_0 \omega}{2 \rho_{\text{eff}}}} \]

See poster: Patrick Krkotic

Superconductor surface resistance in the presence of a dc magnetic field: frequency and field intensity limits

Sergio Calatroni – (submitted to IEEE)
Screen coating for SEY reduction

Both type of coatings, a-C and laser treatment, reduce the SEY to values below 1.

1 µm a-Carbon coated surface

8 µm laser treated surface

Enlarged impedance at > 1 GHz might lead to TMCI-like instabilities.

Valizadeh, et al., IPAC16
Transverse mode coupling instabilities

(Laser) coating: Impedance contributions above 1 GHz.

Threshold bunch intensity for BB-like impedances (k=0 couples with k=-1):

\[N_{TMCI} \approx \frac{16\pi m_p \gamma Q_x \omega_0 \sigma_z Q_s}{e^2 Z_{\perp,0}} \propto \frac{1}{\gamma_t} \]

At 3 TeV (no coating): \(N_{TMCI} \approx 10^{12} \)

At 3 TeV (coating): \(N_{TMCI} \approx 10^{11} \)

S. Arsenyev: talk on Wednesday

Collimator impedance and TMCI: D. Amorim

If necessary, TMCI threshold could be increased by larger bunch area or “nonlinear rf”.

\[f = \frac{1}{\tau_i} = 0.937 \text{ GHz} \]

\[\text{Im}(Z_x), \text{Ohm/m} \]

\[\text{Frequency, Hz} \]

\[f = 1/\tau_i = 0.937 \text{ GHz} \]

\[\text{No layer} \]

\[\text{Layer with thickness 8\mu m, } \rho_{layer}/\rho_{bulk} = 64 \]
Electron cloud: Buildup (no coating)

Photoelectrons without mitigation would dominate the buildup (L. Mether, 2016)

FCC beam pipe design: Photoelectrons stay in antechamber (first approximation)

\[n_{es} \approx \frac{E_s}{\pi m_e c^2 r_e R_p^2} \]

Saturated electron cloud density depends on pipe radius \(R_p \)

Lower electron energies for smaller \(R_p \)

-> Simulation studies using detailed FCC screen started (poster: Daria Astapovych)!

https://github.com/openecloud/openecloud

LHC

See also L. Mether’s talk: shorter bunch spacing.

FCC
Electron cloud density: Instability thresholds

Rumolo et al. PRL (2008): Electron cloud induced instability stronger at higher energies because of smaller beams.

Electron cloud density thresholds

\[n_{e,\text{th}} \approx \frac{\gamma Q_s}{\kappa_e r_e \beta L} \]

3 TeV: \(n_{e,\text{th}} = 4.4 \times 10^{10} \text{ m}^{-3} \)

50 TeV: \(n_{e,\text{th}} = 5.7 \times 10^{11} \text{ m}^{-3} \)

-> Detailed simulations required to determine threshold densities (and required SEY for FCC)!

If the the FCC screen will be a-C coated (with SEY lower/equal 1) and the chosen screen design avoids photoelectron entering in the pipe, electron could induced instabilities should be absent in the FCC.

Simulation for LHC (drifts), B-F., Petrov (PRAB 2012/2015)
Status and Plans (EuroCirCol WP 2.4)

Impedances studies:
✓ Screen and coatings (HTS and laser): HTS for impedance, Laser for SEY
✓ Holes/slits in the screen: Analytical estimates (see B. Riemann today)
✓ Collimators: Important at top energy
 o Interconnects,…

Impedance budgets -> from instability thresholds (!) or tolerable head loads.
✓ Screen/Collimators: Coupled bunch damped by Octupoles (k>=0) and Feedback
 - -> HTS coating might allow to operate with Octupoles only
✓ TMCI (might be an issue with laser coating and collimators)

Ecloud buildup and instability thresholds:
✓ Estimates for buildup in simplified geometries
 o Buildup in detailed FCC screen geometry (-> allowed residual photoelectrons)
 o Required SEY for instability supression.

Scaling of thresholds/budgets from LHC to FCC using analytical/simulations tools.
Backup
Collimator impedances

\[Z_{\text{col}} = Y (1 + \text{sign}(\omega)) i \frac{c \mu_0 L_c}{2 \pi b^2} \cdot \frac{1}{\text{sign}(\omega) \sqrt{1 + b \frac{\mu_0 \omega \sigma_{DC}}{2}}} - i \]

Koschik, et al., EPAC 2004

Betatron collimation (CFC)
- 3 primaries (7.6 \(\sigma \))
- 11 secondaries (8.8 \(\sigma \))
- 5 absorbers (12.6 \(\sigma \))

<table>
<thead>
<tr>
<th>E [TeV]</th>
<th>Growth rate [Turns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1729</td>
</tr>
<tr>
<td>3.3</td>
<td>3805</td>
</tr>
<tr>
<td>50</td>
<td>8018</td>
</tr>
</tbody>
</table>
Ecloud with B=1T