LHC AS FCC INJECTOR

W. Bartmann, M.J. Barnes, F. Burkart, B. Goddard, W. Herr, T. Kramer, M. Meddahi, A. Milanese, M. Solfaroli, L. Stoel, CERN

30th May 2017, FCC week, Berlin

Outline

- FCC injector requirements
- LHC hardware modifications to reach 5 x faster ramping
- LSS modifications
- TLs to FCC
- LHC machine tests in view of FCC

FCC injector requirements

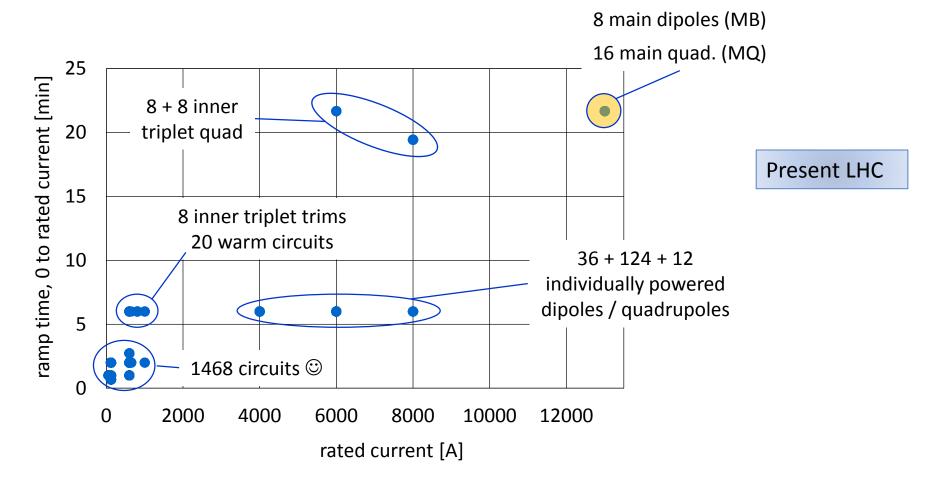
- Injection energy baseline: 3.3 TeV
 - Study range 0.45 TeV 6.5 TeV
- Reuse as much as possible existing injector chain
 - Profit from LIU upgrades for Hilumi and knowledge of delivered/projected beam parameters
- FCC filling time around 40 min
- Focus on 25ns started investigating only recently 5ns
- Keep non-LHC physics program (SPS North Area)
- Envisage future physics program also at LHC (P5)

Parameter	Unit	Value (option)
Beam energy	TeV	3.3
Bunch spacing	ns	25 (5)
Bunch population		$1.0(0.2) \times 10^{11}$
H/V emittance (norm.)	mm.mrad	2.2 (0.44)
RMS bunch length	cm	8.0
Bunches per transfer		50-100
Turnaround time	h	5.0

Table 1: Parameters of Beams to Inject into FCC-hh

FCC filling time

- FCC turnaround of 4-5 h
- FCC filling time should be ~40 min
- Present ramp rate would lead to 90 min filling \rightarrow increase ramp rate by factor 5



Hardware constraints for faster ramp rate

- Protection diodes of main dipoles
 - 6 V turn-on voltage limits to 60 A/s
- Quench protection system:
 - After a quench, dipoles ramped down at 120 A/s
 - No issues expected for 100 A/s for QPS
- Cryogenic load
 - Ramp to full current in 1200 s \rightarrow 480 J/m (hysteresis and eddy currents)
 - System designed for full current to zero in 80 s (3000 J/m)
- Voltage during ramp
 - Arc inductance 15.7 H: 160 V for 10 A/s \rightarrow 800 V for 50 A/s
 - Dipoles are tested to 475 V
 - 50 A/s possible with new power converters/sectorisation
- No limitations expected from
 - Premature quenches ok up to 100 A/s
 - Field quality slow crossing in beginning for snap-back, small contribution from eddy currents
 - RF can cope already now with factor 5 faster ramp

10 A/s \rightarrow 50 A/s

Faster ramping of LHC

The ramp rate limiting circuits are the 13 kA main dipoles and quadrupoles

Ramp function

- Now using Parabolic-Exponential-Linear-Parabolic (PELP) for smooth current derivatives
- Initial ramp critical for snapback and chromaticity
- Use knowledge of LHC magnet model to feedforward and speed up this part
- Ramp up time of 156 s \rightarrow cycle time of 312 s, assume 10 s for flattop and faster ramp down
- To be tested with maximum ramp rate available now

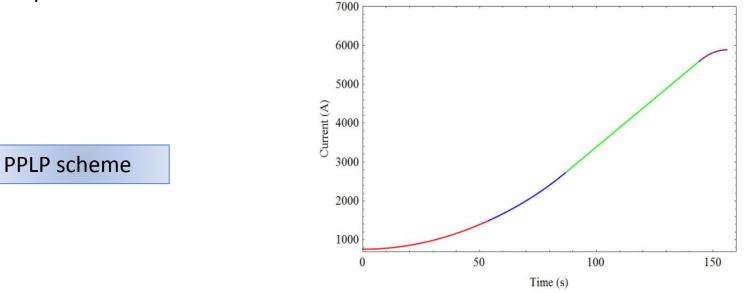


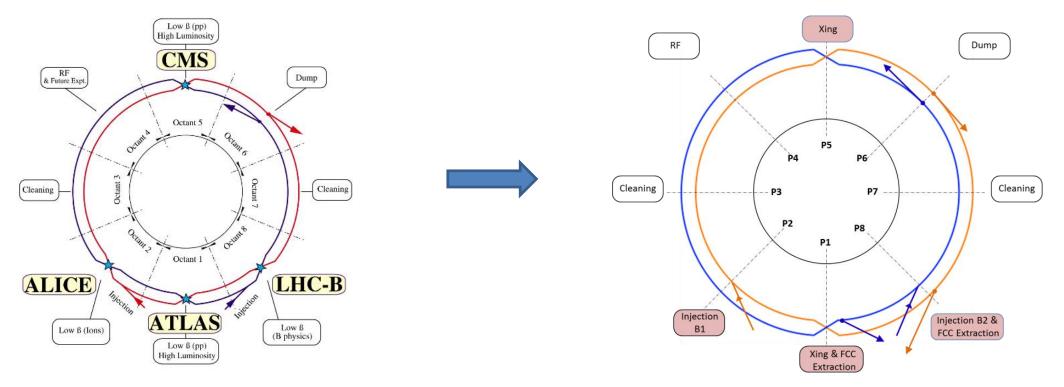
Figure 3: Main dipole current for 156 s LHC ramp-up with 50 A/s linear ramp rate (green).

Filling time

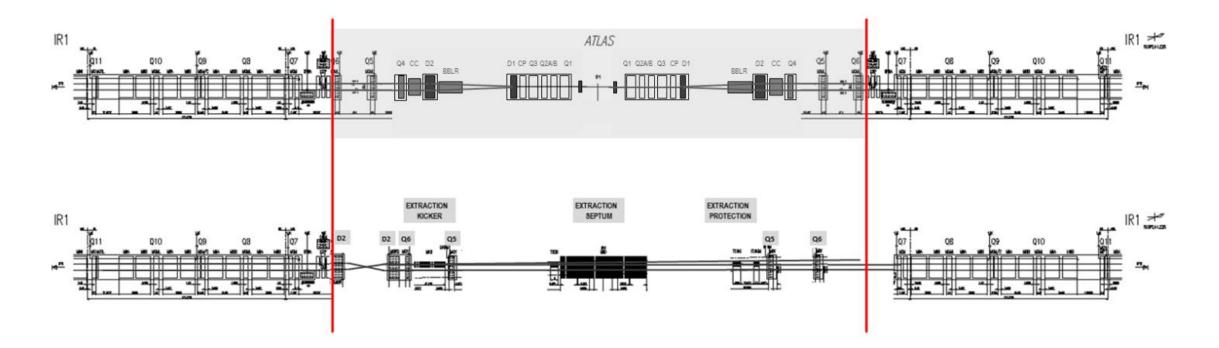
• Assuming to fill FCC with four LHC ramps

- 300 PS cycles a 3.6 s
- 32 SPS cycles a 10.8 s additional
- 3.5 LHC cycles a 312 s additional

Total of 44 min to fill FCC


- 12.5 min for first cycle (Low and intermediate intensities injected for safety/injection validation)
- 10.5 min for cycles 2-4

Additional improvements


- PSB basic period from 1.2 to 0.6 s
- Single batch injection into PS
- LHC ramp, speed up round and out, 60 s 30 s

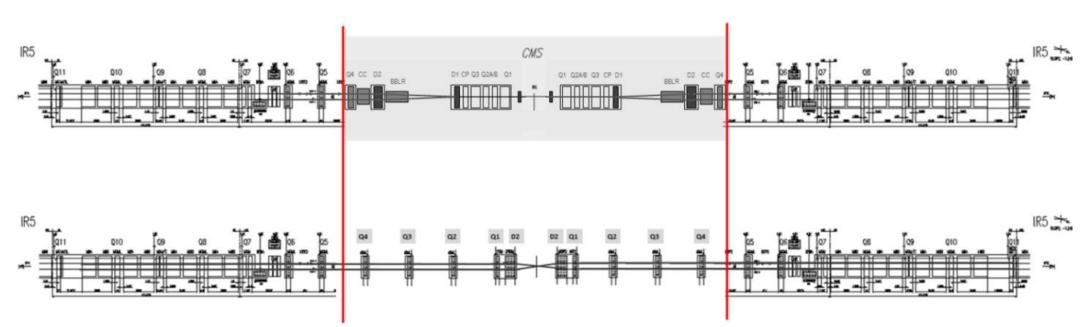
• Can reach ~8 min reduction of FCC filling time – at the expense of cost and performance

LSS modifications

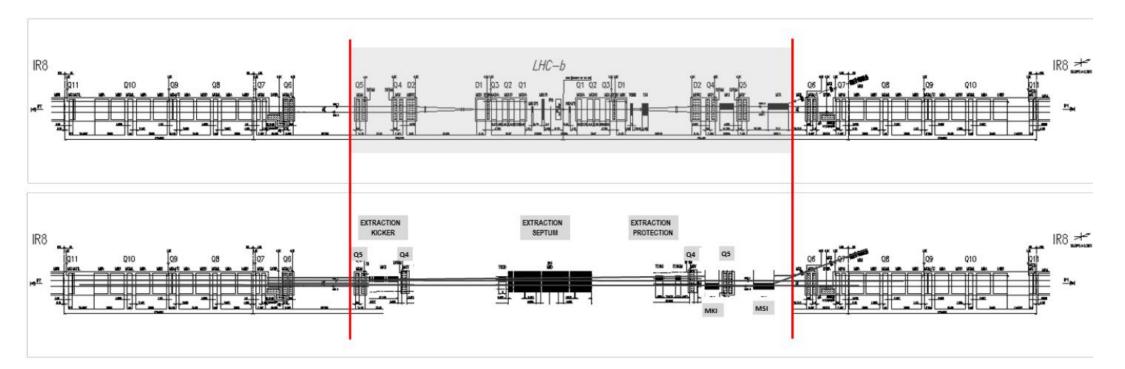
- Keep LSS3 (momentum collimation), LSS4 (RF), LSS6 (dump), LSS7 (betatron collimation)
- LSS modifications
 - LSS1 Replace low beta insertion by anticlockwise extraction
 - LSS2 Move injection to inner ring
 - LSS5 Remove low beta insertion; can also envisage a new LHC experiment here
 - LSS8 Move injection to inner ring, add clockwise extraction

- Low beta insertion removed from Q6 inwards
- A new extraction channel combined with a new superconducting crossing
- Relatively long drift available

LSS2



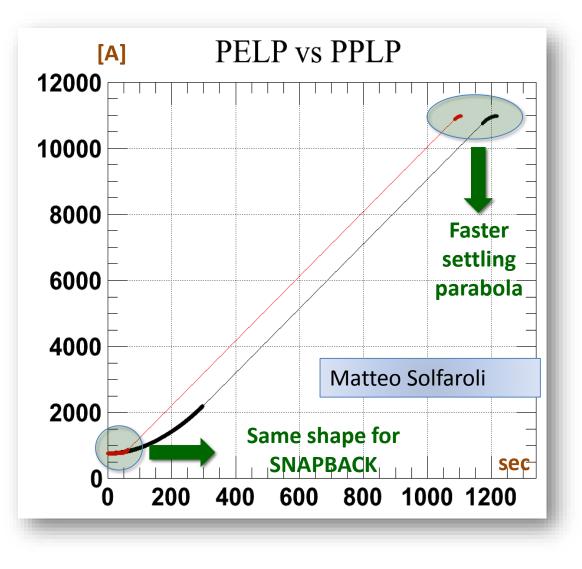
- Low beta insertion and crossing replaced from Q5 inwards by straightforward FODO
- Injection moved to inner ring and downstream


CÉI

LSS2 Injection region modifications

- Low beta insertion replaced from Q4 inwards by FODO
- Crossing scheme with superconducting crossing dipoles
- Possibility to design new experiment in this straight

- Remove low beta insertion from Q5 inwards
- Move injection to inner ring as for LSS2 shifts injection equipment 16.2 m further in direction present IP
- Extract beam from the outer ring
- Extraction can be squeezed next to injection assuming doubling of current through kicker switches c.f. present situation to reach 3.3 TeV
- Can reach up to 6.5 TeV assuming a factor 5 increase of current through switches


CÉRN

LHC to FCC transfer lines

• Extraction from P1 and P8 at 3.3 TeV

	SC (6T)	NC (2T)	Straight	Total length
LHC1 → B	2.4 km	1.4 km	0.9 km	4.7 km
LHC8 → L	1.1 km	2.4 km	3.6 km	7.1 km

LHC machine tests – faster ramp and 225 GeV injection

225 GeV injection:

- Crucial to understand the potential energy swing for the main bends and the control of chromaticity at low energy
- In particular for the scSPS as injector option with 1.3 TeV extraction energy limit
- All systems (magnets, PC, BI, RF,...) have been discussed and no showstopper identified
- Heavy impact on interlocking systems might be scheduled at the end of a run

CÉI

Conclusions

- Aim at 3.3 TeV extraction energy and 40 min filling time with 4 ramps requires 5 x faster ramping
- Maximum ramp rate of 50 A/s dictated by main dipole diodes and induced voltage on the string; main 13 kA
 power converters require upgrades to follow the increase of inductive voltage
 - No limitations expected from RF, cryogenics, quenches and quench detection
- Decommission LHC experiments and low beta insertions
- Add two extraction systems in IR1 and IR8 to transfer to FCC
 - Requires new kicker systems for staggered transfer
- Keep RF, collimation and beam dumps as they are
- 11.8 km lines, of which 3.5 km superconducting
- LHC is demanding and expensive to operate and maintain in comparison to dedicated injector options