

SUPERCONDUCTING SPS (scSPS) as 1.3 TeV injector for FCC

F. Burkart

W. Bartmann, M. Benedikt, B. Goddard, A. Milanese, J. Stanyard, J. Osborne

FCC week, Berlin, 29th of May – 2nd June 2017

Outline

- Why scSPS?
- scSPS
- Optics and Magnets
- Insertions
- Transfer lines
- Conclusion and outlook to CDR

Why scSPS?

The LHC is complex and demanding, and likely expensive to operate and maintain in comparison to other options.

 \rightarrow What are the other options?

- 450 GeV injection from present SPS?
- New accelerator in the FCC tunnel?
- Re-use the SPS tunnel and design a new accelerator!

scSPS – Layout

- Keep SPS geometry (6 LSS).
- Replace SPS by a new superconducting single aperture machine.
- Magnets, beam transfer and RF seem feasible. Collimation is challenging.

Main parameters

Parameter	Unit	Value
Injection energy	GeV	26
Extraction energy	GeV	1300
Dipole field at injection	т	0.12
Maximum dipole field	т	6
Ramp rate	T/s	0.35 – 0.5
Cycle length	min	1
Max. number of bunches / cycle		640
Number of injections		8 (80b)
Number of protons / bunch		≤ 2.5E11
Number of extractions per cycle		4 x 160 b
FCC filling time	min	34 - 40
Stored beam energy	MJ	≤ 33

Optics – arc and straight section

64 m cell length Dipole filling factor: 0.75. 2.65 m free space per half cell.

Optics parameter and magnet aperture

	Parameter	Unit	Value				
	Max. beta $eta_{{}_{x,z}}$	m	107				
	Max. dispersion D_x	m	4.3				
	Orbit + alignment tolerance $O_{x,y}$	mm	2.5				
	Injection oscillation	mm	1.5				
	Emil Presentation: Alexandre Kovalenko: Design of 6 T superconducting dipole for SPS upgrade						
	A _x / A _y	mm	76 / 69				
	Coldbore inner diameter	mm	80				
A_{x_i}	$_{y}/2 = O_{x,y} + I_{x,y} +$ 2.5 mm 1.5 mm	$10\sqrt{1.21\beta_{x,y}\epsilon_{x,y}}$	$+ 1.1 D_{x,y} \delta p/p$				

Parameter	Unit	Value	
Dipoles			
Max. field dipole	т	6	
Magnetic length dipole	m	12.12	K
Ramp rate	T/s	0.35 – 0.5	
Cold bore inner diameter	mm	80	
Number of dipoles		372	
Quadrupoles			Nee
Magnetic length quadrupole	m	1.35	
Cold bore inner diameter	mm	80	
Pole tip field	т	5.85	
Gradient	T/m	67	
Number of quadrupoles		216	

Injection kickers	26 GeV	Septa	26 GeV	
Bdl [Tm]	0.26	Bdl [Tm]	1.9	
Kick angle [mrad]	3	Kick angle [mrad]	22	
Rise time [ns]	200-250	Blade thickness [mm]	7	
HW length [m]	10	HW length [m]	10	

(CERN)

Non-resonant transverse excitation – use of a bent crystal.

Losses during slow extraction, need of additional absorbers and septa protection to be studied.

- Assumed beam characteristics of the injector complex after LIU upgrade.
- 2.2 µm emittance with 2.5E11 protons/bunch.
- 2E5 spills per year (200 days), 5E13 protons/spill → 1E19 protons/year (comparable with present North Area parameters).
- Losses and interplay with collimation system to be studied.

Presentation: D. Woog:

Magnetic core and semiconductor switch characterisation for an Inductive Adder kicker generator.

Wednesday afternoon.

Poster: A. Chmielinska:

Solid state marx generators for use in the injection kickers of the FCC

Septa	1300 GeV			
Bdl [Tm]	20			
Kick angle [mrad]	4.6			
Blade thickness [mm]	7			
HW length [m]	20			

12

Beam dump and fast extraction insertion

External dump line needed.

Combined external beam dump (26 GeV – 1.3 TeV) and fast extraction to FCC – complex system. Dilution kicker system needed.

Extraction protection needs detailed study.

scSPS cycle for FCC filling

<u>scSPS → FCC</u>	В						
scSPS3 → FCCB scSPS5 → FCCL	LSS:	3	1				
		LSS5		•	nc (2T)	Straight	Total length
	ý		scSPS3 ·	→ B _ :	1.3 km	3 km	4.3 km
			scSPS5	→L :	2.5 km	2.8 km	5.3 km
			scSPS →	FCC	3.8 km	5.8 km	9.6 km
		SC	nc (2T)	nc (2T) Straight 3.8 km 0.9 + 3.6 km		Total length	
	LHC → FCC (3.3 TeV)	3.5 km (6T)	3.8 km			11.8 km	

(CERN)

Summary - Why scSPS?

• New accelerator – will be designed to serve as injector for FCC, HE-LHC and Fixed Target up to 1.3 TeV.

- Layout defined.
- Low complexity.
- High degree of flexibility.
- Insensitive to configuration changes multiple users.
- Lower pov Can the collider accept an injection energy of 1.3 TeV?

• Reduced Complexity of the LCC injector chain (4 instead of 5 injectors to LCC).

- Transfer lines to FCC can be designed shorter and with **nc magnets**.
- Higher number of bunches can be transferred safely.
- Higher energy for fixed target areas and test facilities like HiRadMat.
- HE-LHC could profit:
 - Lower energy swing.
 - Beneficial for impedance.
 - Aperture at injection.

To be studied for the CDR

- Further studies for collimation and machine protection.
- Optimize optics studies.
- Transfer line design (optics / collimators).
- Methods for slow extraction.
- Losses during slow extraction process.
- Complexity of combined beam dump and extraction.

Beyond CDR:

• ...

- Study quench behaviour of the magnets.
- Hardware design for the different insertions.
- Study of septa protection.

Thank you!