

Crab Cavities for FCC

R. Calaga, A. Grudiev, CERN FCC Week 2017, May 30, 2017

Acknowledgements:

O. Bruning, E. Cruz-Alaniz, K. Ohmi, R. Martin, R. Tomas, F. Zimmermann

Livingston Plot

Naive Comparison, FCC -hh

Local crab crossing at two high luminosity experiments with alternating crossing angles

FCC-hh & HE-LHC

Increase the LHC energy by factor 2-7

PW angles close to HL-LHC for small β^* option (CCs mandatory)

	LHC	HL-LHC	HE-LHC	FCC-hh	
Energy [TeV]	7	7	13.5	50	
Current, DC [A]	0.55	1.1	0.51	0.51	
B-B Tune shift	0.003	0.01	> 0.03	0.01-0.03	
σ_z/σ_x [cm, um]	7.55 / 16	9 / 7	7.55 / 6.6	7.55 / 2-4	
X-Angle [rad]	285	590	260	300 - 170	
PW-Parameter	0.65	3.1	1.5	5.5 - 1.8	
Frequency [MHz]	400				
F_rev	11.245	11.245	11.245	3.0	

Luminosity G. Reduction Factor

Strong reduction of decreasing σ_x during the fill \rightarrow increasing PW-angle unless x-angle is adjusted

FCC-hh, Some Numbers

Approx 50% increase in required voltage from HL-LHC

The aperture in the cavity region requires careful look, but extra beam-tobeam separation is useful to increase aperture if needed (present is 84mm)

	unit	FCC-hh	HL-LHC
Beam-to-beam separation	[mm]	250	194
Available Length	[m]	20	10
beta*	[m]	0.1-0.3	0.15
beta_CC	[km]	10-30	3.5
Crab Voltage	[MV]	18	12
X-Angle	[urad]	300-170	590
Frequency	[MHz]	400.79	400.79

HL-LHC Crab Cavities

Two designs: horizontal (RF-Dipole) & vertical (Double Quarter Wave) Bulk Niobium technology with strong HOM damping

281 mm

280 mm

Recent Results

The max voltage in the cavities are well beyond the specification

Also low Q0 & field emission with standard SRF process is validated

		DQW #1 (CERN)	DQW #2 (CERN)	DQW #1 (USLARP)	DQW #2 (USLARP)	RFD #1 (USLARP)	RFD #2 (USLARP)
Max Volt	[MV]	5.04	4.8	5.8		4.4	
Ер, Вр	[MV/m, mT]	56, 109	54, 103	65, 125		42, 73	
Rs, Min	[nW]	10	10	9		11	
Rs, Nom	[nW]	15	18	15		13	
FE onset	[MV]	4.0	3.5	4.5		No FE	

DQW, "Dressed Cavity"

These cavities require highly complex 2K assembly due to multiple interfaces and strong RF constraints

Two Cavity Cryomodule

16 cavities (8 Hor, 8 Ver) to be installed in HL-LHC before 2025

1-module with two cavities into the SPS for beam test validation in 2018

FCC-hh Crab Cavities

Alternative **Niobium coated copper cavity** under R&D (WOW)

Potential advantages:

Larger Aperture & lower impedance: FCC-hh has up to $\times 8$ the beta-function at crab cavities compared to HL-LHC

Better cavity stability during a hard quench due to the copper substrate Simpler cryostat due to less shielding and potential to reach 5 MV if coating is better than LHC cavities by x2-3

Main Parameters

Specially shaped poles for coating

w [mm]	251.70
h [mm]	251.70
r [mm]	42.00
L [mm]	1400.00
d [mm]	192.00

Freq [MHz]	400.79	400.79
G [Ω]	109	109
Vx [MV]	3.0	3.0
Energy [J]	10.4	10.4
Rx/Q [Ω]	343.5	343.5
E _{peak} [MV]	50	50
B _{peak} [mT]	78	78

Non-linear behaviour of Rs (Calatroni/Aull)

Big potential in the new coatings (both for accelerating & crab RF)

Coating the WOW Cavity

Integration study ongoing to study the requirements of the WOW cavity coating and the infrastructure (b.252) limitations and required changes

Total height: 5.5 m Total weight: 820 kg (Frame+cavity 517 kg)

RF Noise !

The low frev (longitudinal noise) and $1^{st}\beta$ -sideband ~900 Hz maybe an important aspect for both accelerating & crab cavities

Plot courtesy P. Baudrenghien

FCC ee, Layout

Symmetrically placed straight sections for RF

Available length for RF: ~2.8 km each

Baseline require **no** crab crossing

FCC-ee

Crab crossing not needed, however x/y - z correlation (AC tune/chroma modulation) can help with HT instability (Ohmi/Oide).

	S-KEKB	FCC-Z	FCC-W	FCC-H	FCC-T
Energy [GeV]	4-7	45.6	80	120	175
Current [A]	2.6	1.45	0.152	0.03	0.0066
σx,y [um, nm]		10, 48		25 ,49	
σz [mm]		6.7/3.8	3.1	2.4	2.5
θc [mrad]		30			
PW Parameter	20	6-10		1.5	
Frequency [MHz]	500	400.79			

FCC -eh, ERL option

Basic unit: 5-cell cavity into 4-cavity module

Parameters, FCC -he

Option 1: Use the "LHeC-ERL" to collide 60 GeV on 50 TeV

Option 2: Co-existing ee & hh in the FCC ring up to 200 GeV on 50 TeV

	LINAC-Ring electrons	Ring-Ring electrons	JLEIC	eRHIC
Energy [GeV]	60, 50000	200, 50000	10, 100	18, 275
σx,y [um]	10		18	123
σz [mm]	0.1, 75.5	0.7, 75.5	2, 9	4, 70
θc [mrad]	_	1	50	22
PW Parameter	_	_	12.5	6.3
Frequency [MHz]	400.79	400.79	952	338
Crab Volt [MV]	_	-	2.8, 14.5	4, 13

Crab Cavities, FCC -he

Electron bunch is point like compared to the proton bunch. Therefore, crabbing the proton bunch is important point

Baseline option **doesn't** require crab cavities with head-on collisions, maybe useful for regulating sync. radiation fan

Some Remarks

FCC-hh

Crab cavities are mandatory, scenario for β^* reaching 0.1-0.3 m Coated cavity alternative with low impedance & larger aperture promising R&D, technology demonstration by Q1 of 2020

FCC-ee

Most challenging in terms of accelerating RF $!~\sim3$ times LEP RF No crab cavities required in the present scenarios, possible mitigation of strong head-tail instabilities (tbc)

Electron-Ion

60 GeV-ERL in the Linac-Ring option doesn't nominally require crab crossing (except for a Ring-Ring option).

An x-z correlation at the IP to manipulate the sync radiation fan

Schedule for Coated Cavity Prototype

- Task 1: RF design (BE-RF)
- Task 2: Mech. Design of the prototype and tooling (EN-MME)
- Task 3: Fabrication of the "substrates" (EN-MME)
- Task 4: Surface treatment (TE-VSC)
- Task 5: Coating system and coating (TE-VSC)
- Task 6: Rinsing and clean room assembly testing (BE-RF)
- Task 7: Cold Testing in cryostat (BE-RF)

Q0 Calculation

Nominal kick voltage 3 MV B_{peak} up to 80 mT

Results above 40mT for LHC uncertain due to lack of measurement data

Q based on extrapolation of Rs from the LHC data

 Q_0 (Rs=const.) = 4.45e8

 $\mathsf{Q}_{_0} \; (\mathsf{Rs}{=}\mathsf{Rs}(\mathsf{B})) = 4.05e8$

Power loss distribution for 3MV

Assembly of WOW Cu-Substrate

Impedances of WOW Cavity

