Copper electropolishing studies for the FCC-ee SC-RF cavities

Outline

- Copper surface finishing
- New electrochemical polishing facility
- Electrochemical polishing optimisation work

Chemical polishing (SUBU):

Electrochemical polishing (EP):

 $\begin{array}{lll} \underline{Su} \text{Ifamic acid (85\% w/w)} & -5 \text{ g/l} \\ \text{n-}\underline{Bu} \text{tanol (99\% w/w)} & -5 \% \text{ v/v} \\ \text{Hydrogen peroxide (35 \% w/w)} & -5\% \text{ v/v} \\ \text{Ammonium citrate dibasic (98\% w/w)} & -1 \text{ g/l} \end{array}$

Phosphoric acid (85% w/w) - 55 % v/v n-Butanol (99% w/w) - 45 % v/v

SUBU vs EP

Easier to setup

Improved surface finishing (↓Ra…)

Chemical polishing (SUBU):

Chemically polished copper

- average roughness: 0.2 μm
- pinholes of 0.3 mm

Electrochemical polishing (EP):

Electropolished copper

- average roughness: 0.02 μm
- nearly no defects

Courtesy: S. Calatroni TE / VSC


```
R_{res}^{0} R_{res}^{1}
17±3 n\Omega 5±1 n\Omega m MV-1
28±6 n\Omega 10±2 n\Omega m MV-1
6±6 n\Omega 1.5±1 n\Omega m MV-1
```


SUBU optimisation work

1st set of trials on samples:

 Surface sample / bath volume ratio: 0.23 dm²/dm³ (0.23 dm⁻¹);

HIE-ISOLDE =
$$0.25 \text{ dm}^{-1}$$

400 MHz = 0.28 dm^{-1}

Initial surface roughness:

Ra =
$$0.35 \mu m$$

Rt = $4.40 \mu m$

Chemical polishing (SUBU):

 $\frac{\text{Su}\text{lfamic acid (85\% w/w)}}{\text{n-}\underline{\text{Bu}}\text{tanol (99\% w/w)}} - 5 \text{ g/l} \\ - 5 \% \text{ v/v} \\ \text{Hydrogen peroxide (35 \% w/w)} - 5\% \text{ v/v} \\ \text{Ammonium citrate dibasic (98% w/w)} - 1 \text{ g/l}$

Electrochemical polishing (EP):

Phosphoric acid (85% w/w) - 55 % v/v n-Butanol (99% w/w) - 45 %

SUBU vs EP

Easier to setup

Improved sun confinishing (↓Ra...)

New EP facility

New electropolishing facility

Main requirements:

Electropolishing of bare cavities

Working bench enabling either vertical and horizontal processing

New electropolishing facility

Time frame to put in place new electropolishing installation: Ready for the 1st 400 MHz seamless cavity ~ end of 2017

Task	2017				2018			
	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q
Concept								
Supplier survey								
Design								
Purchasing								
Assembly								
Commissioning				(
Preliminary tests								

New electropolishing facility

Defining the flow diagram and populating information on equipment suppliers (cost and technical specifications)

Electrochemical parameters assessment

Laboratorial setup

Extract data

Define a model

400 MHz with 2cm Ø rod cathode geometry

Output from electrochemical simulation

- Minimum voltage to EP the cavity ≈ 80 V
- Total current ≈ 652 A

Electrochemical parameters assessment

400 MHz with improved cathode geometry

"Optimum" cathode

- Minimum voltage to EP the cavity \approx 19 V
- Total current ≈ 148 A

"Ideal" cathode

400 MHz with "ideal" cathode geometry

- Min voltage to EP the cavity $\approx 6 \text{ V}$
- Total current ≈ 100 A

Fluid dynamics impact on the etching rate

Laboratorial RDE setup

Create a model of the RDE

Output from RDE model

Speed of the RCE (rpm)	polishing current density (A/m ²)	Shear rate (1/s)
0	2 5	0
100	52	18
200	78	47
300	92	85

Fluid dynamics impact on the etching rate

Output from RDE becomes FD input

Output from FD

Current density [A/ m2]

Summary

- Past experience proves that copper electropolishing provides superior accelerating performances if compared with copper chemical polishing (SUBU)
- Electropolishing is the baseline surface treatment for the FCC 400 MHz, niobium on copper cavities
- Copper electropolishing is a missing facility
- New facility:
 - schedule is very tight (commissioning/reception of 1st 400 MHz cavity);
 - manpower is allocated;
 - Budget is assured.
- Optimisation work is ongoing through simulation and using 1.3 GHz cavity as validation and benchmark model

Thank you for your attention

