HOM power in FCC-ee cavities

Ivan Karpov, CERN

Acknowledgments: O. Brunner, A. Butterworth, R. Calaga, J. F. Esteban Müller, N. Schwerg, E. Shaposhnikova

FCC Week 2017, Berlin

FCC-ee options

	Z	W	н	tī
Bunches / beam, M	71200	6000	740	62
Bunch spacing, t_{bb} [ns]	2.5	50	400	4000
Bunch population, N_b	0.4 × 10 ¹¹	0.5 × 10 ¹¹	0.8 × 10 ¹¹	2.1 × 10 ¹¹
Bunch length, σ_t [ps]	12	8.3	7.7	9.2
Beam current, J _A [mA]	1399	147	29	6.4

Harmonic number, h = 130680Ring circumference, C = 97.75 km

HOM power loss in FCC cavities

- f_0 revolution frequency
- J_A average beam current

 \rightarrow HOM power should be extracted (max 1 kW per coupler)

Beam power spectrum

Spectrum contains multiples of $1/t_{bb}$ and f_0 harmonics

M is number of bunches

Example of 400 MHz cavities

Cavity options for FCC-ee (Input from R. Calaga)

Impedance calculation using ABCI

Example of 400 MHz single-cell cavity impedance

Cutoff for all trapped modes \leq 3 GHz

Example of 400 MHz cavities. Impedance below 3 GHz

Resonant lines are far from the beam spectrum harmonics $k \times 400$ MHz (care should also be taken in any future design) \rightarrow This impedance can be excluded from power loss calculations

Example of 400 MHz cavities. Impedance below 3 GHz

Resonant lines are far from the beam spectrum harmonics $k \times 400$ MHz (care should also be taken in any future design) \rightarrow This impedance can be excluded from power loss calculations

Impedance above 3 GHz

 \rightarrow Larger cavity impedance for larger number of cells (opposite per cell)

Power loss for different number of cells in FCC-ee machines

Discrete impedance lines are excluded. Single-cell cavity design is feasible for Z machine

Loss factor of taper-out

*S. A. Heifets and S. A. Kheifets Rev. Mod. Phys. **63**, 631 (1991)

are used in simulations

Loss factor of 4 cavities is 1.21 V/pC

Optimization of transitions

Asymptotic value of loss factor for taper-out

.5
$$\bowtie \quad \kappa_{\parallel}(\sigma) = \frac{1}{4\pi\varepsilon_0 c\sigma_t \sqrt{\pi}} \ln\left(\frac{d}{b}\right)$$

Minimum required length

$$L = \frac{(d-b)^2}{c\sigma_t}$$

Conclusions

- Estimations of power loss for all FCC-ee machines (400 MHz cavities)
 - Maximum power losses are for Z machine: ~ 2 kW for single cell cavity, main contribution is given by impedance above 3 GHz
 - For higher energy machines power losses are below 1 kW
- Significant contribution to the total power loss from tapers for FCC-ee bunch length.
 - For transition from 150 mm to 50 mm loss factor of taperout ~ 1.5 V/pC is achieved for 5 m length
 - Optimization of cold-warm transitions is ongoing

Thank you for your attention!

Asymptotic behavior at high frequencies $f \gg \frac{c}{2\pi b} \rightarrow Z_0^{\parallel} = \frac{Z_0}{\pi} \ln \frac{d}{b}$

Comparison of impedances of steps and tapers

-> Reduction of loss factor due smaller impedance at frequencies below 20 GHz

Role of gap

Example for Z1 option (2.5 ns bunch spacing) and single-cell cavity

revolution harmonics

19