HOM power in FCC-ee cavities
 Ivan Karpov, CERN

Acknowledgments: O. Brunner, A. Butterworth, R. Calaga,
J. F. Esteban Müller, N. Schwerg, E. Shaposhnikova

FCC-ee options

	Z	W	H	$t \bar{t}$
Bunches / beam, M	71200	6000	740	62
Bunch spacing, $t_{b b}[\mathrm{~ns}]$	2.5	50	400	4000
Bunch population, N_{b}	0.4×10^{11}	0.5×10^{11}	0.8×10^{11}	2.1×10^{11}
Bunch length, $\sigma_{t}[\mathrm{ps}]$	12	8.3	7.7	9.2
Beam current, $J_{A}[\mathrm{~mA}]$	1399	147	29	6.4

Harmonic number, $h=130680$
Ring circumference, $C=97.75 \mathrm{~km}$

HOM power loss in FCC cavities

Simulated cavity impedance

f_{0} - revolution frequency
J_{A} - average beam current
\rightarrow HOM power should be extracted (max 1 kW per coupler)

Beam power spectrum

Spectrum contains multiples of $1 / t_{b b}$ and f_{0} harmonics

For Gaussian bunches $\quad\left|J_{k}\right|^{2}=e^{-\left(2 \pi k f_{0} \sigma_{t}\right)^{2}} \frac{\sin ^{2}\left(M \pi k f_{0} t_{b b}\right)}{M^{2} \sin ^{2}\left(\pi k f_{0} t_{b b}\right)}$
M is number of bunches

Example of 400 MHz cavities

Cavity options for FCC-ee (Input from R. Calaga)

Impedance calculation using ABCI
Axisymmetric structure $+$
Gaussian bunch
Loss factor
+
Impedance

Example of 400 MHz single-cell cavity impedance

Cutoff for all trapped modes $\leq 3 \mathrm{GHz}$

Example of 400 MHz cavities. Impedance below 3 GHz

Resonant lines are far from the beam spectrum harmonics $k \times 400 \mathrm{MHz}$ (care should also be taken in any future design) \rightarrow This impedance can be excluded from power loss calculations

Example of 400 MHz cavities. Impedance below 3 GHz

Resonant lines are far from the beam spectrum harmonics $k \times 400 \mathrm{MHz}$ (care should also be taken in any future design) \rightarrow This impedance can be excluded from power loss calculations

Impedance above 3 GHz

\rightarrow Larger cavity impedance for larger number of cells (opposite per cell)

Power loss for different number of cells in FCC-ee machines

Discrete impedance lines are excluded. Single-cell cavity design is feasible for Z machine

LHC-like layout of cryomodule

Loss factor of taper-out

Analytic estimates*

$$
\begin{gathered}
c \sigma_{t} \ll b<d \\
\kappa_{\|}(\sigma)=\frac{1}{2 \pi \varepsilon_{0} c \sigma_{t} \sqrt{\pi}} \ln \left(\frac{d}{b}\right)\left[1-\frac{\tilde{\eta}}{2}\right] \\
\tilde{\eta}=\min (1, \eta) \\
\eta=\frac{L c \sigma_{t}}{(d-b)^{2}}
\end{gathered}
$$

*S. A. Heifets and S. A. Kheifets Rev. Mod. Phys. 63, 631 (1991)

Short wake potentials are used in simulations

Loss factors of 4-cavity structure

Loss factor $\kappa_{\|}(V / p C)$
Steps Taper-out Tapers
With cavities
3.82
2.78
1.41
$\begin{array}{llll}\text { Without cavities } & 3.23 & 1.54 & 0.13\end{array}$

Loss factor of 4 cavities is $1.21 \mathrm{~V} / \mathrm{pC}$

Optimization of transitions

Conclusions

- Estimations of power loss for all FCC-ee machines (400 MHz cavities)
- Maximum power losses are for Z machine: ~ 2 kW for single cell cavity, main contribution is given by impedance above 3 GHz
- For higher energy machines power losses are below 1 kW
- Significant contribution to the total power loss from tapers for FCC-ee bunch length.
- For transition from 150 mm to 50 mm loss factor of taperout $\sim 1.5 \mathrm{~V} / \mathrm{pC}$ is achieved for 5 m length
- Optimization of cold-warm transitions is ongoing

Thank you for your attention!

Impedance of tapers: dependence on length

Taper-out

Asymptotic behavior at high frequencies

$$
f \gg \frac{c}{2 \pi b} \rightarrow Z_{0}^{\|}=\frac{Z_{0}}{\pi} \ln \frac{d}{b}
$$

Comparison of impedances of steps and tapers

Analytical predictions
-> Reduction of loss factor due smaller impedance at frequencies below 20 GHz

Role of gap

Example for Z1 option (2.5 ns bunch spacing) and single-cell cavity

- Scaling corresponds to the case of broadband impedance
- Only for very small M one can expect that resonances can hit revolution harmonics

