SRF Material Options for FCC

Sarah Aull
on behalf of the
FCC RF & WP3 Working Group
Cryogenic Consumption of FCC-ee

Cryogenic power consumption is one of the cost drivers in a CW machine, in particular for FCC-ee

\[P_{\text{cryo,grid}} \sim \frac{V^2}{R/Q} \frac{1}{Q_0} \sim R_S (f, T, \ell, E_{\text{acc}}) \]
Cryogenic Consumption of FCC-ee

Cryogenic power consumption is one of the cost drivers in a CW machine, in particular for FCC-ee

\[P_{\text{cryo,grid}} \sim \frac{V^2}{R/Q} \left(\frac{1}{Q_0} \right) \sim R_S (f, T, \ell, E_{\text{acc}}) \]
Cryogenic Consumption of FCC-ee

Cryogenic power consumption is one of the cost drivers in a CW machine, in particular for FCC-ee

\[P_{cryo,grid} \sim \frac{V^2}{R/Q_0} \approx R_S (f, T, \ell, E_{acc}) \]
Cryogenic Consumption of FCC-ee

Cryogenic power consumption is one of the cost drivers in a CW machine, in particular for FCC-ee

\[P_{\text{cryo,grid}} \sim \frac{V^2}{R/Q} \left(\frac{1}{Q_0} \right) \sim R_S (f, T, \ell, E_{\text{acc}}) \]
Cryogenic Consumption of FCC-ee

Cryogenic power consumption is one of the cost drivers in a CW machine, in particular for FCC-ee.

\[P_{\text{cryo,grid}} \sim \frac{V^2}{R/Q_0} \sim R_S (f, T, \ell, E_{\text{acc}}) \]

- Machine Impedance
- Design Choice
- Material
Cryogenic Consumption of FCC-ee

Cryogenic power consumption is one of the cost drivers in a CW machine, in particular for FCC-ee

\[P_{\text{cryo,grid}} \sim \frac{V^2}{R/Q} \left(\frac{1}{Q_0} \right) \sim R_S(f, T, \ell, E_{\text{acc}}) \]

- Collect representative \(R_s(f, T, \ell, E_{\text{acc}}) \) data
- Define baseline performance
- Calculate the cryogenic consumption for each (material, frequency, temperature, field)-combination
Bulk Niobium
A Well-Known Technology

- High level of expertise
- High cost for raw material
- Requires magnetic shielding
- Only operation at < 2.1 K

K. Hernández-Chahín, THP050, SRF2015
A. Macpherson, MOPB074, SRF2015
Bulk Niobium
A Well-Known Technology

Collaboration with FNAL to explore potential of N doping at lower frequencies and 4.5 K operation.

High level of expertise
High cost for raw material
Requires magnetic shielding
Only operation at < 2.1 K
Nb/Cu
Energetic Condensation Techniques

Lower raw material costs
High thermal stability
No magnetic shielding

Only low E_{acc} due to strong Q-Slope
Mitigated Q-Slope for energetic condensation techniques
Nb/Cu
Energetic Condensation Techniques

Lower raw material costs
High thermal stability
No magnetic shielding

Only low E_{acc} due to strong Q-Slope
Mitigated Q-Slope for energetic condensation techniques

Nb/Cu R&D on 1.3 GHz cavities at CERN; and in collaboration with LNL and STFC

sarah.aull@cern.ch
Beyond Niobium: Nb3Sn
Minimum Performance Target

Higher carnot efficiency at 4.5 K
+ Higher technical efficiency at 4.5 K

Lower cryogenic consumption than bulk niobium at 2 K for
\(R_s(Nb_3Sn@4.5K) < 50 \text{ n\Omega} \)

![Graph showing surface resistance vs. accelerating gradient]

sarah.aull@cern.ch
Beyond Niobium: Nb3Sn
Minimum Performance Target

Higher carnot efficiency at 4.5 K
+ Higher technical efficiency at 4.5 K

Lower cryogenic consumption than bulk niobium at 2 K for
\[R_s(\text{Nb}_3\text{Sn}@4.5\text{K}) < 50 \text{ n}\Omega \]

Details about the A15 R&D program:
Alternative materials and coating techniques for cavities, K. Ilyina (CERN)
RF requirement for FCC-ee W

<table>
<thead>
<tr>
<th>OPTION 1</th>
<th>OPTION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency in MHz</td>
<td>400</td>
</tr>
<tr>
<td>Technology</td>
<td>Nb/Cu</td>
</tr>
<tr>
<td>E_{acc} in MV/m</td>
<td></td>
</tr>
<tr>
<td>Temperature in K</td>
<td>4.5</td>
</tr>
<tr>
<td># of cells/cavity</td>
<td></td>
</tr>
<tr>
<td># of cavities FCC W</td>
<td>428 – 108</td>
</tr>
<tr>
<td># of CM for FCC W</td>
<td>108 – 28</td>
</tr>
</tbody>
</table>

The diagram shows the relationship between E_{acc} and total cryopower for FCC-ee W, with LHC performance marked. The table compares different options for frequency, technology, E_{acc}, temperature, and number of cells, cavities, and CM for FCC W.
RF requirement for FCC-ee W

<table>
<thead>
<tr>
<th>Technology</th>
<th>Frequency in MHz</th>
<th>Temperature in K</th>
<th># of cells/cavity</th>
<th># of cavities FCC W</th>
<th># of CM for FCC W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb/Cu</td>
<td>400</td>
<td>4.5</td>
<td>1 – 4</td>
<td>428 – 108</td>
<td>108 – 28</td>
</tr>
<tr>
<td>Bulk Nb</td>
<td>400</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(E_{acc}) in MV/m</th>
<th>OPTION 1</th>
<th>OPTION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHC performance

ECR on flat sample

NB

Bulk Nb

Nb/Cu is the material of choice for FCC-ee W

Number of cells to be determined by machine impedance considerations and staging scenarios

sarah.aull@cern.ch
RF requirement for FCC-ee Higgs & top

Two competing options for the SRF system for FCC-ee $t\bar{t}$

<table>
<thead>
<tr>
<th>OPTION 1</th>
<th>OPTION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency in MHz</td>
<td>400</td>
</tr>
<tr>
<td>Technology</td>
<td>Nb/Cu</td>
</tr>
<tr>
<td>E_{acc} in MV/m</td>
<td>10</td>
</tr>
<tr>
<td>Temperature in K</td>
<td>4.5</td>
</tr>
<tr>
<td># of cells/cavity</td>
<td>3 – 5</td>
</tr>
<tr>
<td># of cavities FCC H</td>
<td>534 – 322</td>
</tr>
<tr>
<td># of cavities FCC t</td>
<td>846 – 508</td>
</tr>
<tr>
<td># of CM for FCC H</td>
<td>134 – 82</td>
</tr>
<tr>
<td># of CM for FCC t</td>
<td>212 – 127</td>
</tr>
</tbody>
</table>

sarah.aull@cern.ch
RF Model
Cost Estimate

RF scenarios and parameters layout for FCC
N. Schwerg (CERN)
RF Model Cost Estimate

RF scenarios and parameters layout for FCC
N. Schwerg (CERN)
Production Cost
from Sheet to Bare Cavity
<table>
<thead>
<tr>
<th>Raw Material (1/m^2)</th>
<th>Cavity Size</th>
<th>Production Cost from Sheet to Bare Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz & 4 cells</td>
<td>400 MHz & 4 cells</td>
<td>800 MHz & 4 cells</td>
</tr>
</tbody>
</table>
Production Cost from Sheet to Bare Cavity

<table>
<thead>
<tr>
<th>Raw Material (1/m²)</th>
<th>Cavity Size</th>
<th>Fabrication of a cell</th>
<th>Deep drawing of half cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz & 4 cells</td>
<td>800 MHz & 4 cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinning of seamless cells</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image credits: SRF, FCC, CERN
Production Cost from Sheet to Bare Cavity

400 MHz & 4 cells
- Spinning of seamless cells

800 MHz & 4 cells
- Deep drawing of half cells

Raw Material (1/m²)
- Cavity Size

Fabrication of a cell

Electron Beam Welding of the cavity cells
Production Cost from Sheet to Bare Cavity

<table>
<thead>
<tr>
<th>Cavity Size</th>
<th>Fabrication of a cell</th>
<th>Deep drawing of half cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz & 4 cells</td>
<td>Electron Beam Welding of the cavity cells</td>
<td>Electron Beam Welding of stiffening rings and beam tubes</td>
</tr>
<tr>
<td>Spinning of seamless cells</td>
<td>800 MHz & 4 cells</td>
<td></td>
</tr>
</tbody>
</table>

Raw Material (1/m²)
Production Cost from Sheet to Bare Cavity

<table>
<thead>
<tr>
<th>Raw Material (1/m²)</th>
<th>Cavity Size</th>
<th>800 MHz & 4 cells</th>
<th>Deep drawing of half cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz & 4 cells</td>
<td>Fabrication of a cell</td>
<td>Electron Beam Welding of the cavity cells</td>
<td>Electron Beam Welding of stiffening rings and beam tubes</td>
</tr>
<tr>
<td>Spinning of seamless cells</td>
<td>Chemical & Heat Treatments</td>
<td>Bulk EP + 800 °C + Light EP</td>
<td></td>
</tr>
</tbody>
</table>
Bare Cavity
Sensitivity to Production Cost

![Graph showing the sensitivity of various costs in producing bare cavities, with categories such as Raw Material, Cell Forming, Fabrication, Extras, EBW, Bulk EP Nb, Bulk EP Cu, 800 °C heat treatment, Coating, light EP, and SUBU. The graph compares the costs between bulk Nb and Nb/Cu.]
Bare Cavity
Sensitivity to Production Cost

- Cost driver for bulk Nb cavities:
 - Raw material
 - Surface treatments

- Cost driver for Nb/Cu cavities:
 - Fabrication
 - Raw material
Production Cost
from Bare Cavity to Cryomodule

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity per Cryomodule</th>
<th>Quantity per CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/cavity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Helium tank</td>
<td>1</td>
<td>1/cavity</td>
</tr>
<tr>
<td>1/cavity</td>
<td>2</td>
<td>1/cavity</td>
</tr>
<tr>
<td>Power Coupler</td>
<td>1</td>
<td>1/cavity</td>
</tr>
<tr>
<td>2/cavity</td>
<td>4</td>
<td>2/cavity</td>
</tr>
<tr>
<td>HOM coupler</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>tuner</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 per CM</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cryo valves</td>
<td>2</td>
<td>2 per CM</td>
</tr>
<tr>
<td>2 per CM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magnetic shielding</td>
<td>1</td>
<td>1/meter</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cryostat</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CM assembly</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Cryomodule
Sensitivity to Production Cost

The cost of a dressed cavity is well distributed among the single components and dominate the CM cost.
The cost of a dressed cavity is well distributed among the single components and dominate the CM cost.

The cost for a CM with 400 MHz Nb/Cu cavities is about 20% less than for a CM with 800 MHz bulk Nb cavities.
Conclusion

• Successful R&D on the energetic condensation techniques will make Nb/Cu at 400 MHz and 4.5 K competitive to bulk Nb at 800 MHz and 2.0 K in terms of cryogenic consumption.

• Significant reduction of the cryogenic consumption requires the development of alternative SRF materials such as Nb3Sn and V3Si.

• Our cost model estimates a reduction of a Nb/Cu cryomodule of 20% compared to its bulk Nb counterpart.

• Biggest potential for further cost reduction:
 • Fabrication of cavities, helium tanks, power and HOM couplers.