DE LA RECHERCHE À L'INDUSTRIE

Summary FCC-hh machine design

Antoine CHANCE

CEA/DRF/Irfu/DACM

on behalf of FCC-hh machine team FCC week 2017

The Energy-Frontier

received fundina has from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

www.cea.fr

08:30 - 10:00	FCC-hh machine design: Rev	view: design (1), chair: Roy Aleksan
08:30 - 08:45	Daniel Schulte	Parameters and layout
08:45 - 09:10	Antoine Chance	Arc design and lattice integration
09:10 - 09:35	Andrei Seryi	Experimental insertions
09:35 - 10:00	Florian Burkart	Injections and extraction insertions and dump lines
10:30 - 12:00	FCC-hh machine design: Rev	view: design (2), chair: Francesco Cerutti
10:30 - 10:52	Andy Sven Langner	Betatron collimation system insertions
10:52 - 11:14	Angeles Faus-Golfe	Energy collimation system insertions
11:14 - 11:36	Elena Shaposhnikova	Longitudinal dynamics and RF requirements
11:36 - 11:58	Michaela Schaumann	Ion considerations
13:30 - 15:00	FCC-hh machine design: Rev	view: Beam performance and specifications, chair: Mauro Migliorati
13:30 - 13:55	Barbara Dalena	Dynamic aperture and alignment
13:55 - 14:15	Oliver Boine-Frankenheim	Impedances and electron cloud
14:15 - 14:35	Tatiana Pieloni	Beam-beam effects
14:35 - 14:55	Laurette Ponce	Instrumentation overview and challenges
15:30 - 17:00	FCC-hh machine design: Rev	view: Injectors, chair: Peter-Jurgen Spiller
15:30 - 15:55	Wolfgang Bartmann	LHC as 3.3 TeV HEB
15:55 - 16:15	Florian Burkart	scSPS as 1.3 TeV HEB
16:15 - 16:35	Michael Hofer	3.3 TeV beam injection into combined experimental and injection FCC machine insertions
16:35 - 16:55	Antoine Chance	Impact of injection energy on collider design

08:30 - 10:00	FCC-hh machine design:	SppC and selected topics, chair: Angeles Faus-Golfe
08:30 - 08:55	Jingyu Tang	SppC study progress
08:55 - 09:15	Jianquan Yang	SppC collimation study
09:15 - 09:35	Vladimir Shiltsev	Use of electron lenses in FCC-hh
09:35 - 09:55	Elena Shaposhnikova	Implications of 5 ns bunch spacing for the injector chain
10:30 - 12:00	FCC-hh machine design:	Selected topics, chair: Oliver Boine-Frankenheim
10:30 - 10:40	Emilia Cruz Alaniz	Correction schemes for the interaction region of FCC-hh
10:40 - 10:50	Leon Van Riesen-Haupt	Exploring the triplet parameter space to optimise the final focus of the FCC
10:50 - 11:00	Haroon Rafique	Cross-talk simulations between FCC-hh experimental interaction regions
11:00 - 11:10	Alexei Sytov	Simulation of the FCC-hh double crystal-based collimation system
11:10 - 11:20	Alexander Krainer	Dispersion suppressor protection
11:20 - 11:30	David Boutin	Alignment and beam-based correction
11:30 - 11:40	Sergey Arsenyev	Importance of the surface resistivity for the impedance model
11:40 - 11:50	Vladimir Kornilov	Landau damping of intra-bunch oscillations
11:50 - 12:00	Lotta Mether	FCC-hh electron cloud

6 sessions, 29 talks

D. Schulte

1) Design goals and basic choices	8) Injectors		Descriptions of the collider areas	Experimental insertion region concept Collimation concept	
2) Parameter optimisation	9) Additional options - Ion operation	9) Additional options - Ion operation - lepton-hadron operation - special purpose experiments 10) Detectors and experiments		RF insertion concept Arc concept Integrated optics design Single beam current limitations	
3) Key design challenges and solution	 Iepton-hadron operation special purpose experiments 				
4) Optics design and beam dynamics	10) Detectors and experiments			Beam-beam effects Collimation system performance	
5) Machine performance and operation aspects	11) Schedule and cost		Options	Operation cycle (incl. machine protection concept)	
6) Enabling technologies	12) Detailed Parameter Table			FCC-he concept	
7) Site integration			Technical components, e.g.	Magnets Beamscreen	
D. Schulte	FCC-hh, Berlin, May 2017	3	D. Schulte	FCC-hh, Berlin, May 2017	

- 2 Optics design
- 3 Machine performance
- Injectors
- 5 Options
- 6 SppC

Antoine CHANCE

D. Schulte

Layout has changed according to site requirements

- Two high-luminosity experiments (A and G)
- Two other experiments combined with injection (L and B)
- Two collimation insertions
 - Betatron cleaning (J)
 - Momentum cleaning (E)
- . Extraction insertion (D)
- . Clean insertion with RF (H)
- . Circumference 97 75km
- . Can be integrated into the area
- Can use LHC or SPS as injector .

А В 1.05 I av Exp. Exp. + Inj. + Exp. 1.4 km J 2.8 km - extraction 6-coll -1.4 km н

Baseline:	1.25ab-1	per 5	year	cycle

- considering shutdowns, stops, MDs. ...
- = 2fb⁻² per day
- Ultimate: 5ab⁻¹ per 5 year cycle = 8fb⁻² per day

Total 17.5ab⁻¹

Focus on ultimate parameters	
Injection energy 2 2TeV	

ECC-bb Ultimat ECC-bb Luminosity L [10³⁴cm⁻²s⁻¹] 20.20 Background events/bx 170 (24) <1020 (204) Bunch distance At [ns] Bunch charge N [10¹¹] 1 (0.2) Fract, of ring filled n., 1% 80 Norm. emitt. [µm] IP beta-function B (m) IP beam size o (um) 6 9 (2) RMS bunch length o₁ (cm)

0.03 3.5 (1.6) Crah Cav

Crossing angle [g] Turn-around time [h]

0.1.5

Ēio

 $\times 10^{2}$

With our beam current can reach luminosity goal

- ⇒ Not much to be gained
- nushing heam-heam narameter increases risk and requires less noise
- ⇒ reducing beta-function reduces triplet shielding or tightens collimation (impedance, higher risk)
- ⇒ Will reconsider for 5ns spacing

Important for integrated luminosity are

- Turn-around time
- Availability
- . Operational schedule

Time [b] Example options to be considered Flectron lens Wiros

 Pushing collision point beta-functions smaller during run

Antoine CHANCE

Parameters

Summary FCC-hh machine design

ECC week 2017 2nd June 6 / 34

- 3 Machine performance
- Injectors

Options

6 SppC

Antoine CHANCE

cea Experimental Interaction Region

A. Seryi, M. Hofer, E. Cruz, L. Van Riesen-Haupt, et al.

Precise MADX Scar

See poster of Léon van Riesen-Haupt

1 5 Tm

9 / 34

A. Seryi, H. Rafique, et al.

F. Burkart, M. Hofer, et al.

MKI can be shortened and moved to the end of the half-cell, the kick angle can be reduced.

Presentation: D. Woog: Magnetic core and semiconductor switch characterisation for an Inductive Adder kicker senerator.						
Wednesday afternoon.						
Poster: A. Chmielinska: Solid state marx generators for use in the injection kickers of the FCC						
Radius aperture	2.3 cm	1.6 cm				
HW length 40 m 40 m						
Pulses to fill one ring 132 – 66 132						

Optics – 50 TeV fast extraction within 2.8 km

· High beta functions at the septum and quadrupole protection absorbers.

· Low beta function in bending plane at the extraction kicker

Injection Optics

- · Predetermined injection cell length adds space constraints
- Injection optics requires special matching constraint to ensure optimum protection:
- · 90° phase advance constraint between the Kickers and the absorber TDI
- · vanishing dispersion to mitigate the effect of injection oscillation

Dilution Kicker System

· Studies showed that the dilution kicker system is highly demanding (B.dl, rise time, frequency, aperture)

- Aperture of 2nd system increases as it sees the deflection from the 1st system already.
- Same radiation concerns as for dump kickers → gallery and improved design.

· Again a segmented system is needed

- Long beam line essential (lever arm) to reduce B.dl

Optics design

$\overline{\ }$ β and δ cleaning sections

A. Langner, A. Faus-Golfe, A. Krainer, et al.

Antoine CHANCE

Optics design

Cea Arcs and lattice integration

A. Chance, A. Langner, et al.

- ▶ Phase advance of 60 degrees against 90 degrees (idea: E. Todesco).
 - The integrated quadrupole gradient is multiplied by sin 30° ≈ 0.7.
 - With the same FODO cell length, the maximum quadrupole gradient is decreased from 381 T/m to 270 T/m.

Arc design of FCC-bh

- With the same maximum gradient, the quadrupole can be shortened from 6 meters to 4.2 meters.
- The FODO cell can then be shortened or dipole lengthened (by 0.3 m).
- © The reached dipole field we can get is 15.39 T (against 15.71 T before).
- © The correction schemes must be modified
- © The dispersion is enlarged: reduction of the aperture.
- Longer FODO cells longer: 300 meters against 200 meters.
 - The integrated strength is multiplied by 200 = 0.67.
 - © The maximum gradient is then reduced from 381 T/m to 254 T/m.
 - The quadrupoles can be shortened from 6 meters to 4 meters.
 - The dipole field can then be reduced to 15.14 T.
 - $\odot\,$ Larger dispersion and betatron functions (multiplied by 1.5).
 - O The beam stay clear is reduced.

In CHANCE

Aperture at injection energy

FCC week 2017 30th May 20 / 24

2 Optics design

- Machine performance
- Injectors

Options

6 SppC

🕖 Summary

Antoine CHANCE N

CE2 Dynamic aperture and beam correction

B. Dalena, D. Boutin, E. Cruz, et al.

DA at collision (β'=0.3 m)

- DA at collision is dominated by the systematic b₂ dipole error
- tolerance of systematic component of b₃ ≤ 3 unit at collision
- for the new layout at collision (optics III) minimum DA > 40 σ (table v0)
- sptics III) field quality > 26 σ
- \Rightarrow DA at collision due to dipole field quality > 26 σ

Optics 1: 97.77 km layout, L*-36 m, β^+ =4.6 m and maximomentum collimation dispersion 4 m Optics 1: 77.77 km layout, L*-36 m, β^+ =3.5 m and maximomentum collimation dispersion 3 m optics 11: 77.75 km layout, L*-46 m, β^+ =4.6 m and memoranium collimation scaled from UHC

N.B. crossing scheme and final triplet errors NOT considered in these simulations (see A. Servi & E. Cruz talks)

30/2017

B. Dalena, FCC week 2017

Impact of Landau Octupoles

- ~460 octupoles can be installed in Long Arcs
- G_max = 220000 T/m³, Length = 0.32m, I_max = 720 A

	I_oct [A]	min DA [σ]
	1	8.7
inj	10	1.2
	30	< 1
col	720	13

table v0.b₂₅=20 units, optics I table v0. b₂₅=20 units, optics II

able v0, b35=3 units w correctors, optics II

-40

angle [degrees]

 K_MO = (G_max/Bp) (I_oct/I_max) (50/energy)

\Rightarrow important reduction of DA!

main dipole errors table v1 i	included
-------------------------------	----------

C22 BETA AND DISPERSION BEATING

Beta-beating too strong already with a2 > 0.55

Without a2(u) much less beta-beating => a2(u) = 0.5 and a2(r) = 2.2 to be tested Values at collision around 20% stronger than at injection (IR effect?)

Dispersion beating problematic in case 4, 6 (vertical only) and at collision

D. BOUTIN, 31 MAY 2017 | PAGE 8

· Non linear correctors added to the lattice to compensate for the errors errors in the triplet

- Method: adjust strengths of the correctors such that the resonance driving terms arising from the
 errors in the triplet are set to zero. Each pair of non-linear correctors corrects resonance driving
 terms arising from two different resonance lines chosen by its proximity to the working point.
- The effect of the implementation of non-linear correctors gave encouraging results, increasing the dynamic aperture from 1.9σ (without correctors) up to 10.1σ (with a3/b3/a4/b4/b6 correctors)

Experimental Interaction Region, 30 May 2017, A. Se

Antoine CHANCE

Machine performance

O. Boine-Frankenheim, V. Kornilov, S. Arsenyev, A. Langner, et al.

Roughness models

Applying preliminary experimental data

15/25

Previous plots show cleaning inefficiency in terms of simulated proton losses on the aperture

For detailed assessment of performance, need to simulate energy deposition in all elements (collimators + magnets)

assess quenches and robustness of elements during high losses

assess long-term radiation damage effects

> As for HL-LHC, using FLUKA,

Starting conditions: output from the tracking studies (M. Fiascaris)

Need to build detailed 3D geometry in FLUKA of the collimation insertion

30.05.2017 | ETIT | Accelerator physics group | Oliver Roine-Frankenheim | 7

Antoine CHANCE

P. Krkotic, U. Niedermaver

Machine performance

Enlarged impedance at > 1 GHz

might lead to TMCI-like instabilities

Summary FCC-hh machine design

FCC week 2017 2nd June 15 / 34

V. Kornilov, L. Mether, et al.

Vladimir Komilov, FCC Week 2017, Berlin, May 29 – June 02, 2017

Single bunch instability

Above the multipacting threshold, central electron densities are in the instability regime

Stability at injection

Electron densities at 3.3 TeV much below instability threshold

Due to smaller number of photons, and critical energy below Cu work function

	FCC				
E [TeV]	50	1.5	3.3	5.5	
E _c [eV]	4030	0.11	1.14	5.26	
N _y /p*m	0.0497	0.00149	0.00328	0.00546	
Nets/Ntat	0.878	6.1e-20	2.5e-3	0.108	
N _{er} /p*m	0.0436	9.1e-23	8.2e-6	5.9e-3	

L. Meth

CC Week 2017, Berlin

Cea Beam-beam effects

T. Pieloni

High Chromaticity: IPA and IPG

Octupole magnets are used/needed to provide tune spread for Landau damping.

- · They have very negative effect on DA if not used with care.
- · If installed at right location they could help compensating long-range effects!
- · FCC should allow for these option with some tunability of the lattice measurements

Head-on interaction at two IPs will result in a very important beating of roughly 30%

- · Impact on collimation system, is it important?
- Impact on performances → luminosity unbalance → will tune to profit from this
- First attempt to measure and correct

CC Week Berlin 31/05/2017 Beam-Beam Effects FCC

Antoine CHANCE

Machine performance

cea Longitudinal dynamics

E. Shaposhnikova

Transverse beam stability limit: γ_t =99

Ramp with emittance blow-up: γ_t =99

LIU beam parameters for BCMS

Example: RF manipulations scheme for 5 ns from PSB and PS

· PSB-PS transfer identical to BCMS scheme

· New harmonics and many additional RF system for 5 ns spacing

Steps	Accelerator	has	n _b
1	Transfer twice 4 bunches from PSB to PS	9	8b + 1e
2	Double split	$9 \rightarrow 18$	16b + 2e
3	Acceleration to 26 GeV	18	16b + 2e
4	Double splitting	$18 \rightarrow 36$	32b + 4e
5	Batch expansion	$36 \rightarrow 35$	32b + 3e
6	Tripe splitting	$35 \rightarrow 105$	96b + 9e
7	Quadruple splitting	$105 \rightarrow 210 \rightarrow 420$	384b + 36e
 Tot 	al splitting ratio: 2 · 2 · 3 · 2 · 2 = 48	Proposed by E. Jensen, 2015	

Harmonics h = 35/36 with existing 20 MHz system and use of 200 MHz

Missing RF systems: 50 MHz (h = 105) and 100 MHz (h = 210)

· Must be combined with further batch compression

Bunch parameters during ramp

New injector chain: PS energy

 \rightarrow Need injection at E_{kin} ~ 4 GeV for tune shift Δ Q=0.25 (with some margin).

→ Strong dependence on Δp/p (RF system and emittance) 5/34/2817

5/31/2017

Cea Beam instrumentation

.. Ponce

 Performance for lattice BPM (more stringent for collimations and high lumi insertions)

Paremeter	LHC	Target	Beam	Comment
Alignment wrt quadrupoles	~300 um	<200 um	Pilot - Nominal trains	Vertical absolute position vs beam screen slits
Closed orbit precision long term	50um (20 um week)	20 um	Pilot - Nominal trains	Reproducibility Fill to fill over month
Closed orbit precision short term	<1um		Pilot - Nominal trains	Over few minutes
Turn by turn resolution	100 um	50-100 um	Pilot beam	Over 100k turns
Bunch by bunch and turn by turn	<1um	0.1 um	Nominal beam	For few BPM channels only for specific studies (instabilities)
Interlock response	10 turns	10 turns	any	Only couple of BPM channels for Machine protection
Interlock resolution	100 um	50 um	any	

Systematics for LHC:

- Dependance on bunch pattern ~ 200um
- Temperature control: 10-20 um per 0.5 degree

L. Porsce, FCC week 2017

Challenges

- Typical beam size and size evolution during a fill, 5 ns option even more demanding
- · Emittance evolution in collisions permill level (relative)
- · Interceptives devices for cross calibration and matching
- Bunch by bunch data in a reasonnable time for time evolution and eventually feedback
- Limits of existing technique at LHC:
- · Diffraction limit for the visible light
- => Different technics under study (seeToshiyuki Mitsuhashi's presentation)
- => special layout with higher beta (up to factor 10) would help

(R)

Tune measurement

- Tune measurements based on high sensitivity BPMs and the associated electronics.
- The tune measurement system must also provide a phased-lock loop (PLL) tune tracking functionality.
- Similar to the orbit case, the tune data should to be fed into a tune feedback system (-1 Hz)

Challenge for FCC as for LHC:

- Problem with high transverse damper activity regime
- Solution for LHC:
- Measurements and feedback with single bunch + feedforward and excellent reproducibility
- Gated signal on few bunches with lower ADT gain
- => Is it acceptable for FCC?

Tune spectra measured by BBQ system in LHC

L. Ponce, FCC week 2017

L. Ponce, FCC week 2017

V. Shiltsev, A. Sytov

FCC Hollow E-Beam Collimators

FCC Hollow Electron Lens

Double crystal-based collimation setup for betatron collimation

Compare Stability Diagrams 1.5 1 Im(AQ) (× 10⁻³) eLens d0=0.01 (can be further increased 1.2 1.0 0.8 Impedance model 0.7 Octupoles: 0.6 est, with collimators (scaled LHC) with FB 3646 min 100 1m/d/1 -- 0 0003 0.4 1848 - 814 ermilab $Be(\Delta Q)$ ($\times 10^{-3}$)

Coherent effects that can be used for collimation

- Planar effects: channeling, channeling in a crystal with a narrow plane cut*, volume reflection**, multiple volume reflection in a crystal sequence (MVR)
- Axial effects: axial channeling, stohastic deflection***, planar channeling in skew crystal planes,

Machine performance

- 2 Optics design
- 3 Machine performance
- Injectors

Options

6 SppC

Antoine CHANCE

F. Burkart, W. Bartmann, et al.

- 2 Optics design
- 3 Machine performance
- Injectors

5 Options

Antoine CHANCE

cea lon operation

M. Schaumann

Pb-Pb Integrated Luminosity per Run

Secondary Beam Trajectories

Very localized loss:10 beam size on collimator front plane \ge 85/33µm (beam size at IP = 4µm)

To be studied, if these collimators can absorb the deposited power

Antoine CHANCE

Options

Summary FCC-hh machine design

FCC week 2017 2nd June 24 / 34

- 2 Optics design
- 3 Machine performance
- Injectors

Options

Antoine CHANCE

Cea SppC status

J. Tang, J. Yang

Lattice design

Different lattice designs

- Different schemes (100 TeV and 75 TeV @100 km)
- Lattice at injection
- Compatibility between CEPC and SPPC
- Arc cells, Dispersion suppressors, insertions

Project status

- CEPC is now the key project at IHEP

 SPPC modestly behind CEPC, as a long-term plan
- Modest budget is coming from: MOST (2016, 2018, national key research program), Beijing Municipal Government (advanced accelerator technology development platform, shared with HEPS), CAS (pioneering projects) and NSEC (research centers, may need to wait for longer time)
- Study team steadily building-up
- International workshop on CEPC on November 6-8

Dynamic aperture study

motivations

Single diffractive scattering

 $P_1 = P_0 \cdot \frac{\sqrt{E_1} \cdot \ln(0.3 \cdot E_1)}{\sqrt{E_0} \cdot \ln(0.3 \cdot E_0)} \quad \text{With } E_1 > E_0$

Loss from 7 TeV to 37.5 TeV factor 7

- The particles experiencing single diffractive interactions in the primary collimators will loss in the cold magnets of DS
- In order to deal with these particle losses, we can arrange the transverse and momentum collimation in the same cleaning insertion

ren collimation

Simulation results

- Solution 1
- enlarge the aperture of cold dipoles in the momentum collimation, making beam halo through this cold region to impinge on the primary momentum collimators
- Less particle losses in cold dipoles

Antoine CHANCE

SppC

GREAT WALL

GREAT COLLIDER

Summary FCC-hh machine design

FCC week 2017 2nd June 26 / 34

- 2 Optics design
- 3 Machine performance
- Injectors

Options

6 SppC

Antoine CHANCE

\overline{cea} Where we are (1)

- ▶ The layout is now 97.75 km long with a new distribution of the functional parts.
- The current design of Experimental Insertion Region (EIR) is consistent with the overall FCC-hh design and its performance goals.
 - The main EIR length is 1500 m against 1400 m. Shorter EIR significantly decreases the operational margins and flexibility.
 - ► The inner triplet was modified to respect the manufacturing and installation requirements.
 - ▶ Preliminary designs of the low luminosity EIR (combined with injection) have been made.
 - Alternative optics with flat beams to operate without crab cavities was provided.
 - The proton and muon cross-talks are not an issue. The power deposited by synchrotron radiation in the experimental beam pipe is negligible.
 - ► Reducing *L*^{*} even by 10% will have great benefits in terms of field quality tolerances, operational margins and triplet lifetime.
 - This global dependency will need to be addressed so that the overall performance/cost of the FCC-hh design will be further optimized. The value of L* is kept at 45 m for the CDR because of the timeline but should be minimized accordingly with detector people.

Cea Where we are (2)

- ► The injection upstream to the experiment seems to be possible.
- Design of the extraction line: feasible with a 2.5-km-long dump line. The dilution of the beam on the dump was addressed.
- The current design of Experimental Insertion Region (EIR) is consistent with the overall FCC-hh design and its performance goals.
- The collimation studies have well advanced:
 - ► The aperture model has been refined for FCC-hh. Minor changes need to be addressed again.
 - ▶ Major work in benchmarking codes: result discrepancy was enlightened.
 - ► Some collimators to insert in the dispersion suppressor have been designed.
 - ► Adding collimators in the DIS reduces the losses: the target inefficiency could be reached.
 - Still work to solve too large power deposition in few collimators
 - First results on off momentum protons were shown.
 - ► Alternatives like electron lenses or crystal channeling seem promising.
- Arcs were optimized and strong collaboration with magnet group occurs to confirm their feasibility.
 - Alternatives to the arc cells were shown.

- Dynamic apertures have gone on
 - Impact of linear imperfections seems small.
 - Impact of Landau octupole important
 - ► The field quality of the final focusing triplets strongly affects the achievable DA and requires accurate corrections with dedicated coils.
 - Strong reduction of DA with beam-beam effects (but no more zero)
- Single bunch instabilities studies have gone on.
 - Impact of coating on impedance has been evaluated.
 - Experimental data would be a big asset.
 - Progress on Landau octupoles.
 - RF quadrupole still under investigation.
 - Electron cloud studies have gone on: 12.5 ns spacing is even worse than 5 ns or 25 ns spacing.

Cea Where we are (4)

- Beam-beam effects were investigated for the different collision schemes.
 - Flat op;cs requires larger beam to beam separation
 - Magnets field quality tolerances should be defined with Beam-beam at design stage to ensure large DA with BB head-on more than with single beam
 - ▶ Compensation techniques (octupoles or e- lenses) should be investigated.
- ▶ RF ramp and voltage were investigated for nominal and alternative optics.
- ▶ 5 ns spacing is challenging with the current injection chain.
- ► First considerations for the beam instrumentation were presented.
- ► LHC or scSPS as an injector were investigated further with pros and cons for each solution. Needs on the transfer lines and on magnets were shown.
- ► Ion operation was addressed.
 - Injection chain should see the ion availability.
 - The major concern is collimation efficiency.
 - Experimental data of interaction of Pb with material would be an advantage.
- ► SppC status was shown with a new scheme for the collimation with a combined $\beta + \delta$ section.

Cea Did we answer to last year recommendations?

31

For Next Year...

- Continue with the list...
 - everything is still growing in effort, and must continue — nothing is yet "good enough"
- Begin specification of beam instrumentation and diagnostics systems, especially any optics implications
- Begin studying heavy ion implications
- Address specific questions, such as:
 - how much loss (p/sec/meter) can we tolerate?

MS/DS 15 Apr 16 Northern Illinois University

Conclusion

- FCC-hh baseline is evolving
 - No show stopper identified
 - But more work is done in all areas
- Some studies will ramp up further
 - 5ns (or 12.5ns) operation
 - Machine protection, collimator survival, injection, extraction
 - Integration of electron mitigation, impedance, feedback
 - lon runs
 - ...
- · Some alternatives should be addressed, if time allows
 - Working point scan
 - Flat beams at collision
 - Improved collimation system design
 - ...
- Should add novel and better solutions
 - Even if we cannot study them fully for CDR, but to remember to study them I Many thanks to all the

great teams

D. Schulte

FCC-hh, Berlin, May 2017

28

Thank you for your attention and to all the team for the great work!