

FCC-hh Experiments Summary

Summary of 7 Parallel Sessions

Martin Aleksa on behalf of the FCC-hh Experiments WG

Scope of this Talk – Disclaimer

- This talk summary summarizes 7 sessions, 10.5 hours!
- Will not even try to do justice to all the 26 speakers!
- Apologies for having to drop important work that has been done
- Please go and have a look at the material from all the parallel sessions!

	Version: 12		Date: 23/03/2017	Assion titles in hold red indicates assions for machinetholical writev Session titles in hold red failts: indicates assions for physica and apperiment review FCC Week 2017 Program															
Time	Sunday Monday (29.3)		Tuenday (30.5)			Wednesday (31.5)				Thuraday (1.6)			Friday (2.6)		Time				
08:30-09:00		WELCOME (speakers TBD)		FCC-hh machine	Conductor	FCC-ee physics & experiment review	SRF	ECC bh mashing	EuroCirCol WPS	FCC-hh review	FCC-ee review	/	Special	I&O review	ECC en	FCC-hh		Summary FCC-hih machine design	08:30-09:00
09:00-09:30	Registration		Physics at FCC - M. Mc Cullough	design review Design I	Development Program 1	Run plan and SM precision measurements	Recent designs and progress	design	Electromag: Cosinetheta	Physics potential of FCC-hh	Optice & instrumentation		technologies Beam vacuum	ventilation, logistice, transport	Beam dynamice	Calorimetry & trigger	Summaries Machines and Technologies	Summary FCC-ee machine design	09:00-09:30
09:30-10:00		Opening, study status and physics perspectives		R. Aleksan (CEA)	Convener	K. Elis	I. Ben Zvi (BNL) or B. Rimmer (JLAB)	Convener	Convener	J. Lykken	Convener		F. Perez (ALBA)	Ch. Prasse/K. Horstmann/G. Follert (?)/FIML	Convener	B. Heineman (DESY)		Summary I&O / Technologies	09:30-10:00
10:00-10:30		Convener Study status & further plans - M. Benedikt		Coffee Break			Coffee Break				Coffee Break			Convener	Summary Magnets / RF	10.00-10.30			
10:30-11:00		Coffee Break		FCC-hh machine	CDP 2	FCC-ee physics &	SRF	FCC-hh	EuroCirCol WPS	Common	FCC-ee review	/	Special	16 Teela magnet US Macrost	FCC-ee Energy	FCC-hh	Coffee	Break	10:30-11:00
11:00-11:30		FCC-hh conceptual machine design - CDR plan and status		design review Design II	Other conductors: seminar	Higgs, top and flavour	Materials	injectorimachine design	Mechanics: Cosinetheta	experiment software	Machine Detector Interface		Other directions for R&D	develop. Programme	calibration & polarization	Physics performance		Summary FCC-he	11:00-11:30
11:30-12:00		FCC- ee conceptual machine design CDR plan and status		A. Faus-golfe (CNRS)	Convener	A. de Roeck	V. Palmieri (INFN LNL)	Convener	Convener	Convener	Convener		Convener	Convener	Convener	Convener	Summaries Physics and Experiments	Summary FCC-hih experiments	11:30-12:00
12:00-12:30		Convener HE-LHC CDR plan and status FCC ke CDR plan and status														_	_	Summary FCC-ee experiments	12:00-12:30
12:30-13:00					Lunch			Lunch			Lunch			Convener	Closing remarks	12:30-13:00			
13:00-13:30		Lunch													13:00-13:30				
13:30-14:00				FCC-hh machine design review	Conductor: Status	FCC-ee physics & experiment review	SRF roview RF system	Special technologies	16 Tesia Models Technology ERM	FCC-hh experiment review	FCC-ee review	Cost Benefit	Special	I&O review	FCC-he review	Comon detector	Free lunch break		13:30-14:00
14:00-14:30		Status Special Technologies R&D - (and status		Beam performance of Nb38n Direct and specifications		Direct discovery & detectors	t discovery & concepts and letectors requirements	FCC-hh beam handling	RMM-Wound Conductor	requirements & concepts	Injector	Workshop (1)	Other Magneta	Cryogenica	design	technologies			14:00-14:30
14:30-15:00		Infrastructure	CE, I&O CDR plan and status	Convener	Convener	L. Linssen (CERN)	Convener	Convener	Convener	J. Incandela (UC Santa Barbara)	Convener	Convener	E. Fischer (GSI/FAIR)	D. Delikaris (CERN)	O. Brüning (CERN	Convener			14:30-15:00
15:00-15:30		Convener 16 T Magnet R&D CDR plan and status SRF R&D CDR plan and status			Coffee Break Coffee Break			Coffee Break					15:00-15:30						
15:30-16:00		Coffee Break		FCC-hh machine	Conductor:	FCC-ee physics & experiment review	SRF review	Special technologies	16 Teala magnet circuit protection	FCC-M	FCC-es review Collective effects	Cost Benefit	I&O review	16 Tesla magnet review					15:30-16:00
16:00-16:30	Projetation	Status Emerimente and	FCC-Inh experiments and detector - CDR plan and status	lnjectors	Injectors characterization	Synergies & Di complementarities	Directions for R&D	Recent design & progress	other design options	experiment review Magnet & tracking	& energy calibration	Assessment Workshop (2)	Operation, reliability, safety	Status towards the CDR	FUU-BIL FINJBUB	HE LHC deargn			16:00-16:30
16:30-17:00	- Registration Experiments ar Detectors		FCC-ee experiments and detector - CDR plan and status	Convener	Convener	J. Ellis	S. Belomestnykh (FNAL)	Convener	Convener	N. Wermes (Uni Bonn)	Convener	Convener	U. Mirales (CERN)	Convener	M. D'Onofrio	Convener			16:30-17:00
17:00-17:30		Convener FCC-he CDR plan and status		Refreshments		Cold refreshments			Gold refreshments					17:00-17:30					
17:30-18:00		Cold refreshments			Poster Session		Gender Equality working group	FCC / EuroGirCol Collaboration Boards							17:30-18:00				
18:00-18:30		CERN roadmap and FCC Strategy F. Gianoti / E. Elsen (CERN)			G. Guinot (CERN) Lenny Rivkin / Roy Aleksan		san		Germany specific	XFEL status and activities at DESY				18:00-18:30					
18:30-19:00		Roadmaps Plenary Session ICFA view and global activities on future colliders - J. Mnich (DESY)										noissee	on Status of the FAIR project					18:30-19:00	
19:00-19:30		Convener Towards a global strategy for HEP - ted							Convener	IPP Stellarator and Tokamak Research and Technology					19:00-19:30				
19:30-20:00																	19:30-20:00		
20:00-20:30															20:00-20:30				
20:30-21:00		Welcome reception (LA Café and Wintergarten)			Workshop Banzast with Poster August Commony					FCC Steering Committee Meeting (Only ISC members)					20:30-21:00				
21:00-21:30							(Pavillon)	(Pavilion)							21:00-21:30				
21:30 -22:30	9								1	21:30 -22:00									

Why FCC-hh?

Physics Potential of FCC-hh

- Guaranteed deliverables:
- study of Higgs and top quark properties, and exploration of EWSB phenomena, with unmatchable precision and sensitivity
- tbd: further clarification of the nature of new physics discovered at LHC or elsewhere
- Exploration potential:
 - mass reach enhanced by factor ~ E / 14 TeV (will be 5–7 at 100 TeV, depending on integrated luminosity)
 - statistics enhanced by several orders of magnitude for BSM phenomena brought to light by the LHC
 - benefit from both direct (large Q^2) and indirect (precision) probes
- Provide firm Yes/No answers to questions like:
 - is the SM dynamics all there is at the TeV scale?
 - is there a TeV-scale solution to the hierarchy problem?
 - is DM a thermal WIMP?
 - did baryogenesis take place during the EW phase transition?

Dedicated session Wednesday 8:30 – 10:00. Please have a look!

M. Mangano

Physics Program in a Nutshell

• FCC-hh — The ultimate discovery machine

- directly probe new physics up to unprecedented scale
- discover/exclude:
 - heavy resonances "strong" $m(q^*) \approx 50 \text{ TeV}$,
 - "weak" $m(Z') \approx 30 \text{TeV}$,
 - SUSY m(gluino) ≈ 10 TeV,
 - m(stop) ≈ 5 TeV

Precision machine

- probe Higgs self-coupling to few % level, and %-level precision for top yukawa and rare decays
- measure SM parameters with high precision
- exploit complementarity with e⁺e⁻ by probing high dim.
 operators in extreme kinematic regimes

Very interesting studies of FCC-hh measurements presented in the session Thursday 10:30 – 12:00. Please have a look!

M. Selvaggi

Physics Program \rightarrow Requirements (e.g. Higgs)

 γ , leptons, p_T , η acc

id efficiencies and fake

b/tau tagging

performance

rates

fwd jet tagging

Higgs Physics

- Higgs self-coupling (bbyy, bbττ, bb+leptons)
- Top-Yukawa:
 - ttH, H \rightarrow $\gamma \gamma$ (threshold), H \rightarrow b b (boosted)
- Rare Higgs decays ($H \rightarrow cc, H \rightarrow \mu\mu$, $H \rightarrow Z \gamma$)
- "Big Five": Higgs decays (H \rightarrow 4I,WW, $\chi \chi$, $\tau\tau$, bb) see talk tomorrow
- VBF (VBS)
- BSM Higgs $(H^{+/-} \rightarrow tb)$

At threshold, 20×10^9 ggH events are produced at 30 ab^{-1} With pT(H) > 1 TeV, 10^6 H events at disposal.

Large statistics allow to these measurements to be performed in the "boosted" regime.

- → Tracking target : achieve σ / p = 10-20% @10 TeV
- \rightarrow Muons target: σ / p = 5% @10 TeV
- \rightarrow Keep calorimeter constant term as small as possible.
- → Long-lived particles live longer (e.g. 5TeV B-hadron travels ~50cm before decaying)
- ightarrow High granularity in tracker and calos

FCC Week 2017 Berlin — M. Aleksa (CERN)

VBF jets η-distr.

The FCC-hh experiments must be 'general general' purpose experiments with very large ηacceptance and extreme granularity (W. Riegler)

Di-Higgs Studies

The strength of the triple and quartic couplings is fully fixed by the potential shape.

Why is Di-Higgs interesting?

- Study shape of Higgs potential
- Study EW phase transition → cosmological implications
- Impact on vacuum stability
- Self-coupling sensitive to new physics

$H \rightarrow \gamma \gamma bb$ is the golden channel for FCC-hh

 Will derive requirements for detector (systematics, boosted objects)

FCC Week 2017 Berlin — M. Aleksa (CERN)

Standard Model g t,b t,b t,b g t,b t,bt,

Higgs decay branching fraction

June 2, 2017

How to Exploit Physics Potential?

FCC Detector – Reference Design

- During last year converged on reference design for an FCC-hh Experiment
- Plan to demonstrate in the CDR document, that an experiment exploiting the full FCC-hh physics potential is technically feasible
- However, there is a lot of room for other ideas, other concepts and different technologies

Reference Design

6T, 12m bore solenoid, 10Tm dipoles, shielding coil

- → 65 GJ Stored Energy
- → 28m Diameter
- \rightarrow >30m shaft
- → Multi Billion project

4T, 10m bore solenoid, 4T forward solenoids , no shielding coil

→ 14 GJ Stored Energy
 → Rotational symmetry for tracking and trigger !
 → 20m Diameter (≈ ATLAS)
 → 15m shaft
 → ≈ 1 Billion project
 AT 10m so Forward so Silicon tracking

4T 10m solenoid Forward solenoids Silicon tracker Barrel ECAL Lar Barrel HCAL Fe/Sci Endcap HCAL/ECAL LAr Forward HCAL/ECAL LAr

Cavern Size – Opening Scenarios

Maximum length experiment	*75m
Cavern Size (L x W x H) [m³]	75 x 30 x 35
Main Shaft diameter [m]	15
Secondary shaft diameter [m]	10
Main shaft crane requirement [kt]	2 or 3 (depends on HCAL modularity)
Secondary shaft crane requirement [kt]	0.6

* Depending on the compromises made, the open experiment length may vary from 70 m to 80m.

 \rightarrow Two shafts, 15m and 10m

 \rightarrow 75m cavern allows for tracker extraction

H. da Silva

Magnetic Field

New reference design with three solenoids

- 4 T in 10 m free bore
- 60 MN net force on forward solenoids handled by axial tie rods
- No shielding solenoid anymore (cost! smaller shaft!)
- Forward solenoids instead of forward dipoles → rotational symmetry important for performance physics
 - Solenoids extend high precision tracking by one unit of $\boldsymbol{\eta}$

Result:

- Much simplified configuration
- Stored energy: 13.8 GJ
- Lowest degree of complexity from a coldmass perspective
- But: with significant stray field

Everything should be made as simple as possible, but not simpler (Quote attributed to Einstein)

M. Mentink

June 2, 2017

Radiation Levels Simulation

June 2, 2017

1 MeV Neutron Equivalent Fluence for 30ab⁻¹

FCC Software

Support experiments for all colliders: ee, hh & eh

Support physics and detector studies

- Detector concepts: Moving targets
- Both fast and full simulation essential

Collaborative approach:

- Extract from the LHC experiments where possible
- Invest to new solutions where necessary
- Flexible event data model & detector description
- Simulation
 - Full simulation for detector studies
 - Fast simulation for physics benchmarks
- Reconstruction
 - pp: Extreme pile-up, extrapolation to 100 TeV
 - ee: Achieve the best possible precision
- Physics analysis
 - Allow use outside of framework
 - Python flexibility & C++ performance

Supporting GEANT4 full and fast simulation and parameterized simulation (DELPHES & PAPAS)

J. Lingemann

June 2, 2017

A Common Tracking Software Project (ACTS)

ACTS project:

- Idea: Extracting the ATLAS tracking SW to an independent tool-kit
 - Framework and experiment independent
- Integration into FCC-SW ongoing, large parts finalized
 - Geometry from DD4HEP can be read in (e.g. TkLayout FCC tracker geometry)

FCC Week 2017 Berlin — M. Aleksa (CERN)

Pattern

Recognitior

started

done, validated

done, validated

Track Fitting

done, validation ongoing

Detector Studies

Tracker Studies

- The challenge: ultimate FCC-hh: ~1000 collisions per bunch crossing at 25ns bunch spacing scheme → distance <200µm and 0.5ps in time
- Primary vertex identification:
 - Important for many physics channels
 - Important for pile-up suppression
 - Important for B-tagging
 - However, σ_z resolution of single track suffers from beam-pipe material and tracker material
- Background contamination level during track fitting:
 - How many wrong background hits are included in the track fit?
 - Ratio of background hits in track-fit should be kept <20%
- Both problems improved by tilted layout
 - Material reduction \rightarrow multiple scattering reduction
- Also investigating how much timing information would help

.

June 2, 2017

Recent Design Optimization Work (4.v01)

TkLayout: fast detector simulation and layout design tool

- Tilted layout of **outer tracker** driven by requirement to achieve ~0.2 bkg. contam. level (BCL) in PR:
 - uppermost layer designed non-tilted to keep the highest possible lever-arm
 - modules positioned to hermetically cover full luminous region ±75mm
 - ECs strips res. in Z needed to be set to ~500um (~1mm OK)

→ tilt angle of 1st layer: $\vartheta_{tilt} \simeq 10^{\circ}$ optimized to achieve a compromise between low MB & higher radial position Z. Drasal

450 Inner 2.5 3.0

Good Performance with Tilted Layout

Tracking Performance

Default radius: 20 mm

Impact parameter resolution as a function of the beam-pipe radius

Moving out the innermost barrel layer by **1 cm** would **degrade** the impact parameter resolution by **45%** for very forward tracks of pT=10 GeV. → keep radius as small as possible

Many interesting studies!

- material studies
- beam-pipe radius
- tau decay vertex position efficiency
- B-hadron decay vertex position efficiency
- Flavor tagging

E. Perez

Full Simulation Tracking Studies

Material Budget

Beryllium Carbon

Aluminum

Copper

PE Silicon

Number of X_0

0.6

0.5

0.4

- Full simulation studies with FCC SW are complementing studies with TKLayout, some aspects can only be studied with full simulation
 - Needed to assess impact of pile-up on tracker performance
 - Only way to check feasibility of pattern recognition
 - Occupancy studies

Calorimetry

Reference Detector

Inspired by ATLAS calorimetry with excellent conventional calorimetry and in addition high granularity to optimize for Particle Flow techniques, pile-up rejection, boosted objects'....

- ECAL, Hadronic EndCap and Forward Calo:
 - LAr / Pb (Cu) (J. Faltova)
- HCAL Barrel and Extended Barrel:
 - Scintillating tiles / Fe with SiPM (C. Neubüser)

Other options considered for ECAL

- Digital Si / W (T. Price)
- Analog Si / W (not yet studied, but will profit from CMS HGCal TDR)

Electromagnetic Calorimeter (ECAL)

- Detector with larger longitudinal and transversal granularity compared to ATLAS
 - ~8 longitudinal layers, fine lateral granularity (Δη x Δφ = 0.01 x 0.01), ~2M channels
- Possible only with straight multilayer electrodes
 - Proposal: Inclined plates of absorber (Pb) + active material (LAr) + multilayer readout electrodes (PCB)
- Pros: Easy construction (compared to ATLAS accordion), higher precision
- Cons: Sampling fraction changes with radius:
 - Possible to achieve targetted electron/photon energy resolution of 10% / sqrt(E) \oplus 1%?
 - Electronics noise with PCB readout

Reference calorimeter in FCC SW (incl. tracker)

ECAL First Performance Results

- First performance results very encouraging
- Very critical dependence on upstream material (tracker, services and cryostat)
 - Dead material correction applied
- Next steps: Add electronics noise, pileup, geometry optimization, other absorber materials

HCAL Barrel

Reference Detector:

- ATLAS type
 - Scintillator tiles steel
- Higher granularity than ATLAS
 - $\Delta \eta x \Delta \phi = 0.025 x 0.025$
 - 10 instead of 3 longitudinal layers
 - Steel –> stainless Steel absorber (Calos in magnetic field)
- SiPM readout → faster, less noise, less space

How could we achieve compensation?
→ Higher Z material (e.g. Pb spacers)

C. Neubüser

ECAL & HCAL Barrel First Performance Results

- ECAL and HCAL in EM scale
 - Comparable with ATLAS results
 - Calibrated pion resolution will be better
 - In addition fine granularity will be exploited for particle flow
- Next steps: corrections/calibration, clustering, jet algorithms, particle flow

Digital ECAL

Interesting digital ECAL option using CMOS MAPS

- Can achieve the ultra high granularity with the use of CMOS Monolithic Active Pixel Sensors
- □ Thin sensitive region, usually 12-25um
- □ Thin substrates, low material budget
- Low noise
- Readout on the sensor so no need for separate chip
- Developments in HV/HR CMOS to deplete the sensor improve charge collection speed and radiation hardness

Generally the more active layers the better the resolution (speaking about 30 – 50 layers) Absorber material: Pb and W equivalent in terms of resolution, but Pb lead shows better linearity (wider shower)

June 2, 2017

FCC Week 2017 Berlin — M. Aleksa (CERN)

T. Prize

Digital ECAL First Performance Results

- Optimal granularity: pixel pitch ~50μm
- Sensor thickness ~18μm
- With realistic geometry (1mm air gap for read-out, cooling, power) achieving 14% / Sqrt(E) at η = 0.
- Linearity is of concern (more than one particle per pixel)

- Forward region of FCC-hh detectors Si not an option
- Depleted CMOS currently under development (HV/HR) with results to 10¹⁵ n_{eq}/cm² and beyond presented recently by other groups so feasible for Barrel region
- Cost
 - Cost of CMOS imaging sensors needs to decrease to make affordable but over 20 years this is expected to fall dramatically.
 - A cost of 30 cents / cm² would mean an ECAL of ~\$30M.
 - Much more compact ECAL would also reduce costs of other systems

June 2, 2017

Calorimeter Granularity Studies

- Almost every physics channel will show boosted signatures at 100 TeV → important requirement for HCAL
- Look at hits associated with two close-by particles

- What is the required lateral segmentation for FCC calorimetry?
 - Studies based on SLIC SW.
 - Jet substructure studies for jets up to 20 TeV:
 - Optimal HCAL size using is 5x5 cm (vs ~20x20 cm for ATLAS/CMS)
 - almost no improvement anymore for smaller cell sizes
 - Corresponds well to $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ in reference detector.

Muon System

	η=υ.5	η=1	η=1.5	
9	<0.5k	Hz/cm ²		
6				η=2
4-	<	10kHz/cm ²		η=2.5
2 1				η=3 η=3.5 r>1r
1 2	3 4 5 6 7 8	9 10 11 12 13 14 15 16	17 18 19 20 21 22 23 24	25 ^{z[m]}

ATLAS muon system	HL-LHC rates (kHz/cm ²):
MDTs barrel:	0.28
MDTs endcap:	0.42
RPCs:	0.35
TGCs:	2
Micromegas und sTG	GCs: 9-10

Table 4.5: Expected rates on the muon detector when operating at an instantaneous luminosity of 2×10^{33} cm⁻²s⁻¹ at a collision energy of 14 TeV. The values are averages, in kHz/cm², over the chamber with the minimum illumination, the whole region and the chamber with maximum illumination. The values are extrapolated from measured rates at 8 TeV.

LHCh	Region	Minimum	Average	Maximum
LITED	M2R1	162 ± 28	327 ± 60	590 ± 110
	M2R2	15.0 ± 2.6	52 ± 8	97 ± 15
	M2R3	0.90 ± 0.17	5.4 ± 0.9	13.4 ± 2.0
	M2R4	0.12 ± 0.02	0.63 ± 0.10	2.6 ± 0.4
	M3R1	39 ± 6	123 ± 18	216 ± 32
	M3R2	3.3 ± 0.5	11.9 ± 1.7	29 ± 4
	M3R3	0.17 ± 0.02	1.12 ± 0.16	2.9 ± 0.4
	M3R4	0.017 ± 0.002	0.12 ± 0.02	0.63 ± 0.09
	M4R1	17.5 ± 2.5	52 ± 8	86 ± 13
	M4R2	1.58 ± 0.23	5.5 ± 0.8	12.6 ± 1.8
	M4R3	0.096 ± 0.014	0.54 ± 0.08	1.37 ± 0.20
	M4R4	0.007 ± 0.001	0.056 ± 0.008	0.31 ± 0.04
	M5R1	19.7 ± 2.9	54 ± 8	91 ± 13
	M5R2	1.58 ± 0.23	4.8 ± 0.7	10.8 ± 1.6
	M5R3	0.29 ± 0.04	0.79 ± 0.11	1.69 ± 0.25
	M5R4	0.23 ± 0.03	2.1 ± 0.3	9.0 ± 1.3

r>1m rate<500kHz/cm²

HL-LHC muon system gas detector technology will work for most of the FCC detector area

FCC Week 2017 Berlin — M. Aleksa (CERN)

W. Riegler

Muon System

p_t=3.9GeV enters muon system p_t=5.5GeV leaves coil at 45 degrees

Three ways to measure the muon momentum

- 1) Tracker only with identification in the muon system
- 2) Muon system only by measuring the muon angle where it exits the coil
- 3) Tracker combined with the position of the muon where it exists the coil

dp_T/p_T (%) 10% 4 p(GeV) 100 1×10^{4} 50 500 1000 5000 3TeV/c 20TeV/c All within reach of 'standard' muon system technology

With 50µm position resolution and 70µrad angular resolution we find (η=0): ≤10% standalone momentum resolution up to 3TeV/c ≤10% combined momentum resolution up to 20TeV/c

June 2, 2017

FCC Week 2017 Berlin — M. Aleksa (CERN)

W. Riegler

Trigger & DAQ

- Do we require a trigger for FCC-hh ?
 - Yes! We're not going to store every bunch-crossing forever
 - Depends what you mean by trigger...
- Where is the data buffered whilst events are being selected ?
 - On-detector? Off-detector? A combination of them both?
 - Depends on link speeds, power, material budget, DAQ capacity

How are the events selected ?

 Depends on what data is available, processing capabilities, backgrounds and physics goals...

		Threshold L=5E34	Threshold L=3E35
electron	60 kHz	55 GeV	90 GeV
muon	60 kHz	35 GeV	60 GeV
МЕТ	60 kHz	160 GeV	>350 GeV

Thresholds are indicative, clearly depend on details of bandwidth allocation

June 2. 2017

- Front end detector data rates are substantial :
 - Tracker : ~800 TB/s¹

Link power / material budget ?

Event builder bandwidth ?

Event selection processing / power ?

- LAr+Tile Calo : ~200 TB/s²
- Si/W Calo : O(1000 TB/s) ? guesstimate !

Which detectors can provide a trigger ? Trigger data bandwidth requirements ? Latency constraints ? Trigger performance ?

J. Brooke

Common Technologies

Common Technologies: Si Sensors

Extremely interesting survey over different kinds of Si sensors

- very fast development
- for tracking (Hybrid vs MAPS)
- for timing (e.g. LGAD)

Need to make sure that high momentum in this field is maintained after HL-LHC → Strategic R&D

N. Wermes

June 2, 2017

Silicon Photonics for HEP?

- Silicon Photonics:
 - Use of silicon substrate and ASIC production techniques to pattern waveguide and optical field manipulating structures
 - Allows the fabrication of optical modulators and high level of integration of optical circuits like couplers and gratings
 - Promise of lower power & cost
 - But still need a source of optical power (that could be located remotely)
- Is radiation resistance sufficient?
 - Some work assessing this technology has started

June 2, 2017

Conclusions

- Great progress since last FCC Week
- New reference design with 4T solenoid (10m diameter) and forward solenoids
- Detector studies reach impressive level of detail
 - Results from extrapolations from HL-LHC and FCC simulation (full simulation, fast simulation, parameterized simulation)
 - No show-stoppers to build an FCC-hh detector exploiting the full physics potential – however, challenging environment, detailed work on detector design and performance important
- Getting prepared for the CDR
 - Outline exists
 - Next step: starting to write!

Thank You for Your Attention!

June 2, 2017

Magnet – Electrical Scheme and Quench Protection

100 Forward solenoid (initial quench onset) 80 Forward solenoid (no initial quench onset) 90 60 40 Main solenoid (initial quench onset) 20 0 20 250 500 750 1000 1250 1250 500 750 1000 1250 1250 Time after quench onset [s]

Electrical scheme

- All Solenoids powered in series
- Main solenoid decoupled from forward solenoids during quench (bypass diodes parallel to forward solenoids)
- Requires three current leads

Quench protection (using Quench code Quench 2.7)

- Conductor RRR = 400
- Main solenoid: Extraction (Quench-back) + Quench heaters
- Forward solenoid: Quench heaters
- Nominal Quench: 56 K in main solenoid, 89 K in forward solenoid, 73% extraction
- Worst case fault (no working heaters): 142 K in main solenoid, 133 K in forward solenoids

M. Mentink

FCC-hh Detector and Experiments CDR Outline

Benchmarks processes, detector requirements from physics Definition of the benchmark processes with main backgrounds Detector requirements 'from physics' in terms of momentum resolution, energy resolutions, acceptance and objects like e/gamma performance, jet performance, tau, b, Etmiss, Muons, Trigger

Experiment, detector requirements from environment:

Luminosity, radiation environment, luminous region, pileup Discussion of the reference detector and alternative ideas

Software: Simulation software for FCC detectors

Magnet systems: Engineering of reference design and discussion of alternatives

Tracker: Layout, performance, technology and data rate discussion

EMCAL:

Liquid Argon and Silicon, performance and technology discussion, ideas on digital ECAL

HCAL: Organic Scintillators, Liquid Argon, SiPM technology, Silicon

Muons:

Principles of trigger versus identifier, standalone and combined performance, technologies

Trigger/DAQ: Principle concepts in relation to HL-LHC

Physics performance: DELPHES formulation in relation to ATLAS/CMS Performance for benchmark channels

Cavern and infrastructure: Cavern and shaft dimensions, installation scenarios, sidecavern, access, safety, shielding, activation, maintenance scenarios

Cost Goals, Strategic R&D:

Extreme radiation environment, large area silicon sensors, high speed links, microelectronics, radiation hard scintillators, Liquid Argon Technology, High precision timing detectors ...

June 2, 2017