BEAM TRANSFER CHALLENGES

W. Bartmann, M.J. Barnes, F. Burkart, B. Goddard, V. Forte, M. Fraser, T. Kramer, A. Lechner, M. Meddahi, E. Renner, L. Stoel, F.M. Velotti, CERN

31st May 2017, FCC week, Berlin

Outline

- Sources of emittance blow-up during beam transfer
 - Implications on hardware for low emittance 5 ns beams
- Machine protection limits
 - Injection protection and implications on injection kicker
 - Extraction protection and implications on dump kicker
 - Dump absorber and implications on dilution system

Error sources for delivery precision

- Correctable errors
 - Magnet misalignment
 - Magnet systematic (different laminations, steel,...) and random errors (different transfer function within a series)
 - Long term drifts due to temperature, humidity,...
 - All these errors lead to trajectory variations that can be corrected
 - Since the transfer function is considered correctable $\rightarrow \Delta I/I = \Delta B/B$
- Uncorrectable (dynamic) errors
 - Random errors:
 Shot-to-shot stability
 - Systematic errors: Power converter ripple, kicker waveforms

Example for present PSB-PS transfer

- Extract, recombine four PSB rings and inject into PS via four kicker systems
- Can use TFB to counteract kicker waveform (systematic) and power converter ripple (random)
- No active handle on optics mismatch
- Reduction of dp/p with longitudinal damper helps to reduce dispersion and energy mismatch

Table 3: Emittance growth at PS injection due to different error sources in the PSB to PS transfer.

Mismatch	Emittance growth [%, hor/vert]					
	Pres. LHC	Upgr. LHC	Upgr. HI			
Steering	0.3/1.5	0.3/1.5	0.1/0.5			
Betatron	4.6/6.8	1.3/0.0	2.0/0.0			
Dispersion	4.4/8.8	0.2/2.4	0.0/5.3			
Total	6.3/11.2	1.3/2.8	2.0/5.3			

CERN

Example for present SPS-LHC transfer

Table 1: Estimated contributions to the emittance increase for transfer and injection into the LHC (TI 8 values).

Error	Parameter	Unit	Value	$\Delta \epsilon / \epsilon_0$
Steering	Δe	σ	1.5	
(damped)	$ au_{DC}/ au_d$		14	1.005
Betatron	λ		1.15	1.039
Dispersion	ΔD	m	0.20	
	$\Delta D'$	rad	0.002	1.024
Energy	$\Delta p/p$		$5 \cdot 10^{-4}$	1.002
Tilt	θ	rad	0.052	1.013
Coupling	κ		0.03	1.001
Total				1.048

Similar contributions from optics and steering errors as for lower energy transfer

Error sources with Transverse Feedback as mitigation

- Kicker ripple, PC stability
- Presently contributes with 0.5% emittance growth assuming flattop ripple (the kicker rise fits well between bunches)
- In case of LIU rise time contributes and gives emittance growth of 2-3%
- Mitigations
 - Assuming extra effort in HW design (manpower and budget for R&D)
 - Faster systems reduce rise time by ~10%
 - Factor ~5 reduction of waveform ripple
 - e.g. systems in PS complex with same B.dl requirement from +/-2% ripple \rightarrow +/- 0.4%
 - e.g. systems in LHC from +/-0.5% \rightarrow +/-0.1%
 - Aggressive damping times of 5-10 turns (instead of several 10s of turns) without injecting more noise into circulating beam
 - Build linear machines (e.g. scSPS) to keep detuning for higher amplitudes low
- Relative emittance growth can probably be controlled to ~1e-3 → most likely not even in FCC times measurable!

CERN

Error sources without active mitigation

Betatron mismatch

- No active handle, but independent of adiabatic shrinking
- Presently have at least 20% error
- Results in emittance growth of 1-3% per transfer
- Very difficult to control since it relies on optics measurement with single passage of at least a factor 10 better or to control contribution from each magnet via HW specification

• This could present the main issue concerning emittance growth

Mitigations

- Huge improvement in optics measurement
- Rebuild existing lines with HW much tighter specified, requires control of transfer functions within magnet series , heavy measurement campaign – time!
 - Same for power converters

Error sources without active mitigation

- Dispersion mismatch, energy error
- Dispersion relatively well measurable
- Mostly important for large dp/p can be difficult if this is required for space charge mitigation
- \rightarrow Could be issue for LIU/Hilumi
- Mitigations
 - Building new PSB recombination lines
 - Replacing PSB by Rapid cycling synchrotron
 - Replacing PSB by SPL

Error sources without active mitigation 2

- Energy mismatch
 - Can work on dp/p but might be needed for space charge forces
- Geometrical mismatch
 - Accounts for 1.3% emittance growth at LHC injection (B2)
 - Can be mitigated by skew compensation scheme or building a new TI 8 line
- Coupling
 - Considered to be in the noise of all the other errors
- → Smaller contributors

Summary for errors from transfer systems I

- Present machines should operate in the range of 2-5% relative emittance growth per transfer from simulations
 - This includes damping from transverse feedback systems otherwise emittance growth >50%
 - This does not account for emittance growth during cycle (e.g. transition crossing)
- However, in daily operation emittance growth of 20% can easily occur without knowledge of the source

Figure 2: Intensity along the batch in the SPS without transverse damper (top) and with transverse damper (bottom).

Figure 4: Vertical normalised emittance for several injections of bunch trains with 800 ns batch spacing.

10

CÉR

Summary for errors from transfer systems II

- Compressable error sources (kicker with feedback systems) are not the big contributors
- Contribution from optics is important and barely compressible when manpower, budget and schedule are of consideration...
- Assuming SPL as injector and 0.3 um at PS extraction (see Elena Chapochnikova's presentation)
- 2 or 3 additional transfers scSPS or LHC as injector
 - Transfer including errors from extraction kickers, TL hardware, injection kickers
- With aggressive improvements in the CERN injector chain, one can probably reach 1-2% emittance growth per transfer

CER

Outline

- Sources of emittance blow-up during beam transfer
 - Implications on HW for 5 ns beams
- Machine protection limits
 - Injection protection and implications on injection kicker
 - Extraction protection and implications on dump kicker
 - Dump absorber and implications on dilution system

(céi

Machine protection during injection

- Injection protection elements for LHC will have to be upgraded for Hilumi era
 - Damage of collimators
 - Attenuation of beam
- Extensive studies for transfer line collimators and injection dump profit for FCC
- Limit of around 5 MJ depends on beam parameters, optics at injection

- Maximum # circulating bunches in FCC defined by synchrotron radiation impact
- Maximum # injected bunches defined by damage/attenuation limits of absorbers
- Definition of injection kicker rise time: 425 ns (see David Woog's talk)

Machine protection during injection

- Damage limit of absorbers well studied
- Attenuation limit requires max allowed energy deposition on superconducting strands, worst case beam parameters
- Tracking studies to quantify shower impact will define
 - Conceptual design phase space coverage by how many collimators in transfer line
 - Collimator settings close collaboration with collimation team to preserve collimator hierarchy
- Particular importance of these studies due to unfortunate design of injecting into the experiment in FCC

15

Machine protection at extraction – dump kickers

- Extraction concept driven by machine protection
 - 8 GJ correct functioning of beam dumping system is not a performance feature but imperative
 - See F. Burkart's presentation

Dump kickers

- Reduction of kick strength to lower single switch voltage and reduce probability of self-trigger
- Fast rise time for bunch separation on extraction absorbers absorber survival
- Investigation of switch architectures to avoid self-trigger (see P. van Trappen's poster)
 - Detecting self trigger and short-circuiting charge to ground crowbar
 - Series connection of two switches to inhibit current over magnet in case of single self-trigger

Machine protection at extraction – dilution system

- Dilution system vital if solid graphite dump block considered (see Anton Lechner's talk)
- Alternative of water beam dump without dilution being investigated (see N. Tahir's talk)

F. Burkart, Anton Lechner

(CERN)

Dilution hardware

FIG. 3: a) The optimal pattern $R_i(t)$ eq. (3) (solid black line), a fitted exponential (dashed red line), and the optimal exponential (solid blue line) waveforms. b) The dump pattern with the fitted exponential time-dependence of the kickers.

CÉR

Dilution hardware

- Damped LC circuit with 50 kHz frequency (see D. Barna, T. Kramer, FCC week 2016)
- Spiral from outside \rightarrow max deflection reached after ½ f = 5 us
- Dump kicker has rise time of 1 us immediate retrigger causes beam not sufficiently diluted
- Different rise times can be taken into account for programmed dump not for async.
- → Adapt retriggering time to dilution kicker rise time in case of asynchronous beam dump
 - Single self-trigger with LHC retriggering time leads to ~30 bunches oscillating before clean extraction
 - Adapting the retrigger time causes ~145 bunches oscillating

(CÉRN

Asynchronous dump

- Oscillation of a self-trigger 0.9 sig
 - Iterate on phase advance between extraction kickers and primary collimators
- With series-switch architecture down to 0.01 sig
- Retrigger asap ~several 100 ns
 - Dump block needs to be exchanged
 - 30 bunches oscillating
 - 6 bunches swept
- Retrigger after ~4 us
 - \rightarrow dump block OK
 - 145 bunches oscillating
 - 6 bunches swept
- Re-trigger when next abort gap in sync

Beam impact on extraction equipment

- Self-trigger of kicker switches due to beam impact could trigger several modules at once
 - switches in gallery, dedicated shielding
- Beam rigidity requires most likely SC septum technology (see A. Sanz Ull's talk)
 - Energy deposition studies on septum current leads
 - Design of passive septum protection
 - Combination of nc and sc septa technologies

CEI

Conclusions

Emittance growth in the CERN injector chain

- With a new dedicated low emittance injector chain, one can probably reduce the theoretical emittance growth from 2-5% to 1-2% emittance growth per transfer
- Main limitation is the measurement and therefore operational control of these values
- Machine protection during beam transfer
 - Defines rise time and repetition rate of injection kicker
 - Careful study of injection protection since experiments will catch the shower of injection failures
 - Baseline design of extraction protection including dump absorber OK for programmed dump
 - Several scenarios studied for asynchronous dump need to go into details of trigger delays between dump and dilution kickers
 - Switch architecture studies to limit impact of beam on machine in case of self-trigger
 - Alternative solutions (water beam dump, very low density graphite, powder) under consideration