

FLUKA Monte Carlo modelling of the FCC arc cell: radiation environment and energy deposition due to beam-gas interaction

Angelo Infantino, Maria Ilaria Besana, Francesco Cerutti, Markus Brugger

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Introduction: R2E studies applied to FCC

- Consists of *experts in various fields* related to electronics damage
- Coordinates studies to minimize all risks of radiation-induced failures at CERN accelerators
- > The main goals of the R2E-oriented studies are:
 - ✓ to define and quantify the effects of the radiation on the electronics;
 - ✓ to monitor and/or estimate the radiation levels in the concerned area;
 - ✓ to test and develop radiation-hard or sufficiently tolerant electronics;
 - $\checkmark\,$ to implement mitigation options.

A. Infantino

- Integrated in the R2E mission
- Based on the well-consolidated *experience from LHC*
- Study of the *radiation levels in critical areas* for electronics
- > Extensive use of FLUKA Monte Carlo simulation

- Increase FCC reliability by factors to reach performance goals
- Design of "optimized" areas for electronics
- (First) Evaluation of the *requirements and constraints*
- Lifetime and choice of *critical components*

Introduction: R2E studies applied to FCC

Radiation sources critical for electronics:

- Particle debris from collisions in IPs (LSS)
- <u>Direct Losses</u> in collimators and absorbers (DS)
- Beam-gas interaction (ARC)

A. Infantino

Cumulative Effects

- Deterministic Effects, Easy to predict
- Proportional to Total Ionizing Dose (TID)
- LHC absolute values typically not critical (especially in shielded areas)
- Scaling of components positive for TID (smaller oxides)

Radiation Effects in Electronic Devices

Single Event Effects

- Stochastic Effects, Hard to predict
- Proportional to *High Energy Hadrons fluence*
- Absolute levels are high, even in shielded areas (neutrons)
- Most effects are constant with scaling but they can also increase (proton direct ionization, etc.)

Introduction & Aim

- Scaling form LHC data 0 https://indico.cern.ch/event/486275/contributions/1164475/subcontributions/197611/attac hments/1282506/1906036/20160601 FCCScaling.pdf
- FLUKA MC simulation of a full arc cell: Radiation Levels 0 https://indico.cern.ch/event/580163/contributions/2351810/attachments/1360751/206562 9/20161103 FCC Rad Lev ICRSup.pdf

AIM OF THE WORK

- Significant update of the infrastructure in 2017
- Assessment of different relevant quantities for the design of the arc:
 - **R2E:** radiation levels in critical areas for electronics

FCC Week 2017, 29 May 2017 - 2 June 2017, Berlin, Germany

- *Dose* -> Cumulative Effects
- *Fluence*: p, K, π , μ , n, High Energy Hadrons (HEH, >20 MeV) -> SEE
- Magnet and Cooling
 - Peak power density
 - Total power in the cold mass and beam screen
 - Peak dose

A. Infantino

FLUKA Monte Carlo modelling of the FCC arc cell: radiation environment and energy deposition due to beam-gas interaction

FCC FLUKA modelling: 2017 update

FCC Week 2017, 29 May 2017 - 2 June 2017, Berlin, Germany

Model of the arc cell: Tunnel & Alcove

Original drawings courtesy of Fani Valchkova-Georgieva (EN/INT)

Tentative Gas-Density Profile

Gas-Density Profile: Courtesy of R. Kersevan & I. Bellafont (TE-VSC-VSM)

Radiation Levels in the FCC tunnel & alcove

Radiation Levels in the Tunnel

Radiation Levels in the Alcove

A. Infantino

Radiation Levels in the Alcove

*See LHC Project note 363

Radiation Levels in the Alcove

- ✓ Differential particle distribution in energy for SEE rate calculation
- Unknown SEE-cross section
- ✓ Tunnel: *HEH fluence* drives the SEE rate -> potential *direct ionization* from charged particle [A. Infantino et al., IEEE Transactions On Nuclear Science, 64(1), 2017]
 - Alcove: particle environment *dominated by neutrons -> indirect ionization*

Radiation Levels in the Tunnel

Radiation Levels in the Tunnel

Energy Deposition in the Magnets

MB and MQ magnet

Magnet design: courtesy of B. Caiffi (INFN-GE) & D. Schoerling (TE-MSC-MNC)

FLUKA Monte Carlo modelling of the FCC arc cell: radiation environment and energy deposition due to beam-gas interaction

FCC Week 2017, 29 May 2017 - 2 June 2017, Berlin, Germany

1480 mm

647 mm

MB and MQ coils

Energy deposition on MB and MQ coils

Note: Beam 1 – Estimated quench limit for Nb₃Sn: 40 mW/cm³

🔊 | A. Infantino |

Energy deposition on MB and MQ coils

	Το	Total Power [W]				Total Power [W]			
Μ	agnet	Cold Mass	Beam Screen		Мад	net	Cold Mass	Beam Screen	-
	B1	2.73	0.48	Average power loss per	B	1	5.31	1.05	Average power loss per unit arc-cell length: ~466 mW/m
	B2	3.69	0.83		B	2	6.43	1.41	
	B3	2.79	0.60		B	3	5.57	1.19	
	B4	2.78	0.60		B	4	5.62	1.21	
	B5	2.76	0.59		B	5	6.72	1.49	
	B6	2.77	0.59		В	6	5.81	1.13	
	Q1	1.30	0.31	~233 mW//m	• q	1	2.34	0.53	
	B7	2.47	0.42	233 1110/11	B	7	5.05	0.99	
	B8	3.57	0.80		B	8	6.22	1.36	
	B9	2.74	0.59		B	9	5.43	1.16	
	B10	2.72	0.59		B 1	. 0	5.46	1.17	
	B11	2.70	0.58		B1	.1	6.48	1.43	
	B12	2.71	0.58		B1	2	5.38	1.04	
	Q2	1.31	0.32		lQ	2	2.31	0.53	
Note	Note: Beam 1 (0.5 A)				Note: B	Note: Beam 1 & 2 (1.0 A)			

A. Infantino O FLUKA Monte Ca

BEAM 1

CERN

Energy deposition on MB and MQ coils

Note: 10⁷ seconds in data taking

Note: Beam 1 – Baseline SC magnets dose limit: 30 MGy

A. Infantino

Take-Home Message:

- ✓ Consolidated experience within the FLUKA team in the evaluation of the radiation levels in critical areas for electronics as well as the radiation load for magnets
- ✓ FLUKA simulation allow for an accurate modelling of the particle transport at (very) high energy taking into account all the physics effects, the source term (Beam-gas interaction) and the actual geometry of the infrastructures & magnet/coils
- ✓ *Radiation levels* in critical areas for electronics
 - DOSE (long term effects):
 - Tunnel: factor ~200 LHC (power converter locations)
 - Alcove: factor ~3-6 LHC RE areas at the entrance of the maze, more efforts needed for the rack locations
 - □ High Energy Hadrons (Single Event Effects):
 - Tunnel: HEH ~500 LHC
 - Alcove: HEH ~3-4 LHC RE areas, *neutrons* dominate the particle environment
- ✓ *Radiation load* for the magnets:
 - Peak power density: max value $\sim 0.85 \text{ mW/cm}^3$ (<<< estimated quench limit for Nb_3Sn)
 - **D** Total Power: 2nd and 8th are the most stressed magnets
 - □ Peak dose: ~1.1 MGy in one year of operation (<<< baseline dose limit for SC magnets)

Angelo Infantino

Special acknowledge to:

Rubén García Alía (EN-STI-FDA), Volker Mertens (TE), Fani Valchkova-Georgieva (EN/INT), Roberto Kersevan (TE-VSC-VSM), Ignasi Bellafont (TE-VSC-VSM), Daniel Schoerling (TE-MSC-MNC), Barbara Caiffi (INFN-GE), Valentina Venturi (TE-MSC-CMI), Davide Bozzini (EN-EL-DDO), Maria Mylona (EN-EL-DDO), Markus Widorski (HSE-RP-AS),

and more ...

