Reflectivity and Photo Yield measurements of technical surfaces

<u>Eliana La Francesca^{1,2}</u>, G. Gwalt³, F. Schäfers³, F.Siewert³, A. Sokolov³, M. Angelucci¹ and R.Cimino¹

¹ Laboratori Nazionali di Frascati- INFN

SAPIENZA UNIVERSITÀ DI ROMA

² Università "Sapienza" di Roma

³ Helmholtz Zentrum Berlin

Acknowledgements: INFN- NCV project MICA; We thankfully acknowledge HZB for financial support.

Outline

- Synchrotron radiation in FCC-hh
- Reflectivity
- Carbon Reflectivity
- Bessy II measurements
- Conclusions

Synchrotron Radiation detrimental effects

- Heat load on the accelerator walls
- Photon stimulated desorption
- Production of secondary electrons
- Beam instability
- LHC has a non negligible SR production.

In the Highest Energy Proton Circular Collider ever designed, FCC-hh, large production of Synchrotron Radiation is expected

FCC Parameters

http://tlep.web.cern.ch/content/fcc-hh

Parameters	LHC	H-L LHC	FCC-hh
c.m. Energy [TeV]		14	100
Circumference <i>C</i> [km]	26.7		100 (83)
Dipole field [T]	8.33		16 (20)
Injection energy [TeV]	0.45		3.3
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	5.0	5.0
Stored beam energy [GJ]	0.392	0.694	8.4 (7.0)
SR power per ring [MW]	0.0036	0.0073	2.4 (2.9)
Arc SR heat load [W/m/aperture]	0.17	0.33	28.4 (44.3)
Critical photon energy [keV]	0.044		4.3 (5.5)

Version 1.0 (2014-02-11)

4

Dipoles at cryogenic temperature of 1.9 K

Credits: R. Kersevan -- Beam Dynamics meets Vacuum, Collimations, and Surfaces

FCC needs a Beam Screen at the highest possible temperature compatible with vacuum stability, impedance...

Synchrotron Radiation interaction with Matter

FCC-hh SR incidence angle:
0.035 deg (0.62 mrad)
~ 21 m from source
Photon fan strip ~ 2mm

6

R. Cimino, V. Baglin and F. Schäfers, PRL. 115 (2015) 264804

Eliana La Francesca

Synchrotron Radiation interaction with Matter

Arc SR Heat Load = 28.4 (44.3) W/m/aperture

R. Cimino, V. Baglin and F. Schäfers, PRL. 115 (2015) 264804 Eliana La Francesca

Reflectivity

X-Ray Reflectivity depends on a limited number of parameters:

Photon energy and light polarization

Angle of incidence

Surface roughness

Material

Eliana La Francesca

8

Specular Reflectivity VS Incidence angle

http://henke.lbl.gov/optical_constants/

Eliana La Francesca

9

Reflectivity

X-Ray Reflectivity depends on a limited number of parameters:

Photon energy and light polarization

Angle of incidence

Surface roughness

Material

Specular Reflectivity VS Roughness

REFLEC simulations

Eliana La Francesca

11

Reflectivity

X-Ray Reflectivity depends on a limited number of parameters:

Photon energy and light polarization

Angle of incidence

Surface roughness

Specular Reflectivity VS Material

Specular Reflectivity: the case of Carbon

BESSY-II Optic Beamline and Reflectometer

A.A.Sokolov, et al, Proc. of SPIE92060J-1-13(2014)

Eliana La Francesca

BESSY-II Optic Beamline and Reflectometer

- Incidence angle θ: -90° 90°
- Detector in-plane 2θ: -180° 180°
- Detector off-plane χ : -4° 4°
- Sample detector: 310 mm
- Six axes sample positioning
- Sample current measurement
- GaAsP-Photodiodes
- Detector slits, pinholes

Bessy II Measurements

- Photon Energy range 35÷1800 eV
- Beam height h=0.3 mm
- Incident Beam measurement
- GaAsP Photodiodes (4x4mm) (1.2*4mm)
- Incidence angle 0.25, 0.5 deg
- Reflectivity measurement

Specular Reflectivity

Photo Yield:

 $PY = N_o/N\gamma$

Copper samples

AFM (20x20µm²)

Cu 1A

78.4 nm

60 50

40

30

19.7

70

Cu 1A Cu 2A

Sample	RMS Roughness (R _a)	
Cu 1A	10 nm	
Cu 2A	30 nm	
Polished	18	

Copper sample Cu1A and REFLEC simulations

Specular Reflectivity VS Photon energy (Preliminary Results)

Total Reflectivity VS Specular Reflectivity

Eliana La Francesca

Photo Yield VS Incidence angle

Conclusions

- At FCC-hh SR incidence angle contaminants will influence Reflectivity.
- Carbon coating seems to increase Total Reflectivity and reduce absorption and related Heat Load.
- ▶ For technical surfaces scattered light cannot be neglected.
- Photo Yield does not seem to significantly depend on roughness and decrease with CC.
- Our preliminary results suggest that further work is needed in order to qualify the use of Carbon Coating to increase Reflectivity.
- Experimental data are important to characterize SR behaviour and HL for all materials to be used in FCC-hh dipoles and Interaction points.

Thank you for your attention.

Eliana La Francesca