First experimental results with the SuShi septum prototypes

Dániel Barna Wigner Research Centre for Physics, Budapest, Hungary

<u>Outline</u>

- Motivation
- The SuShi concept
- Simulation
 - Field homogeneity
 - Massless septum
- Experimental results:
 - > MgB₂
 - > HTS
- Outlook

Kristóf Brunner, Anikó Német (Wigner RCP)

Miro Atanasov, Márta Bajkó, Hugues Bajas, Carlo Petrone (CERN)

Giovanni Giunchi

Alexander Molodyk (SuperOx)

FCC extraction scheme & parameters

Injection is OK with LHC technology (Lambertson septa)

Dániel Barna: 1st exp. results with the SuShi prototypes

FCC extraction scheme & parameters

Kicker angle α_k	0.045	mrad
Septum angle α_{s}	1.2	mrad
Septum integrated field	190	Τm
Available space for septum	120	m

Dániel Barna: 1st exp. results with the SuShi prototypes

FCC extraction scheme & parameters

Kicker angle α_k		0.045	mrad
Septur	n angle α_{s}	1.2	mrad
Septum integrated field		190	Τm
Availal for sep	ole space otum	120	m
2	Need ≥ 2 T field (to accomodate gate valves, pumps, etc)		

Dániel Barna: 1st exp. results with the SuShi prototypes

Motivation, requirements

- B > 2 T
 - Not easy with normal-conducting devices
 - need superconductors?
- Must follow the ring energy (quasi-DC mode)
- Field homogeneity: ~1%
- Leakage field at circulating beam: < 10-4 relative

SuShi = **Su**perconducting **Sh**ield

- Put a superconducting shield around the circulating beam (or the inverse config)
- Cool below $\rm T_{\rm c}$ in zero field
- Ramp up an external field
- Induced persistent eddy currents cancel the field inside
- Like an eddy current septum, but can work in quasi-DC mode

For details: D. Barna, PRAB 20 (2017), 041002 http://cern.ch/sushi-septum-project

Pros & Cons

- Pros
 - Shielding currents arranged by nature precisely, not by us
 - Continuous 2D current distribution, with no leak (in contrast to a magnet's winding)
 - Critical state model: currents flow at J_c (i.e. highest possible value, thinnest possible septum blade)
 - Bulk superconductor, no windings, no interleaving insulation (better mechanical and thermal stability)
 - No quench heater needed
- Cons
 - Superconductors in potentially high rad zone \rightarrow quench? (for all SC solutions)
 - Passive shield hysteretic behaviour
 - Shield's state is not a unique function of the controllable parameters T and B_{ext} → must start from a 'virgin' state for each accelerator cycle.

Challenges compared to usual shielding applications

- Aimed field is high: >2 T (3-4 Tesla for a more compact system?)
- Must simultaneously shield the circulating beam, and shape a homogeneous field outside
- Coupled optimization of superconductor's shape and external magnet's geometry
- Homogeneity must hold independently from field strength, spanning a range of a factor 15 between injection/extraction

How to make a homogeneous field

How to make a homogeneous field

How to make a homogeneous field

truncated $\cos -\theta$ -like configuration

Field homogeneity: ΔB/B~1-2% up to 3 Tesla, over a 5 cm GFR

- despite different penetration depths
- with different SC materials

For details: D. Barna, PRAB 20 (2017), 041002

Massless septum

For details: D. Barna, PRAB 20 (2017), 041002

Dániel Barna: 1st exp. results with the SuShi prototypes

Massless septum

Dániel Barna: 1st exp. results with the SuShi prototypes

Massless septum

3 planned prototypes

- Quick and simple experiments \rightarrow cylindrical shield in an existing magnet
 - Check highest shielded field
 - Check flux creep (slow relaxation of shielding currents)
 - Identify best material/technology for more sophisticated tests/prototypes
- Prototypes:
 - MgB₂
 - HTS
 - NbTi/Nb/Cu multilayer
- Shield parameters:
 - 450 mm length (to exceed the originally planned LHC MQSX magnet's length)
 - 50 mm outer diameter (to easily fit into the 70 mm bore of the magnet)

Experimental setup

Dániel Barna: 1st exp. results with the SuShi prototypes

Experimental setup

Dániel Barna: 1st exp. results with the SuShi prototypes

The MgB₂ shield

- Produced by the Reactive Liquid Magnesium Infiltration (RLI) process (G. Giunchi, Int.J.Mod.Phys.B17,453)
- Extra large boron grainsize (160 μm) to be stable against flux jumps (G.Giunchi et al, IEEE Trans. Appl. Supercond. 26, 8801005)

Dániel Barna: 1st exp. results with the SuShi prototypes

Dániel Barna: 1st exp. results with the SuShi prototypes

Dániel Barna: 1st exp. results with the SuShi prototypes

Dániel Barna: 1st exp. results with the SuShi prototypes

Dániel Barna: 1st exp. results with the SuShi prototypes

MgB₂: field penetration

MgB₂: field penetration

Dániel Barna: 1st exp. results with the SuShi prototypes

MgB₂: field penetration

Dániel Barna: 1st exp. results with the SuShi prototypes

Measured external magnetic field is non-linear as a function of magnet current!

Dániel Barna: 1st exp. results with the SuShi prototypes

Observed nonlinearity is not due to MCBY's iron

COMSOL simulation in precise model of MCBY magnet

Dániel Barna: 1st exp. results with the SuShi prototypes

- Increasing field \rightarrow more penetration
- Effective shielding surface drifts away from Hall sensor
- Less field concentration at sensor

COMSOL simulation in precise model of MCBY magnet

32/48

COMSOL simulation in precise model of MCBY magnet

 J_0 and γ are strongly correlated

Dániel Barna: 1st exp. results with the SuShi prototypes

simulation in precise model of MCBY magnet

COMSOL

 $J_{_0}$ and γ are strongly correlated

Dániel Barna: 1st exp. results with the SuShi prototypes

 From observed nonlinearity one can get some info on J_c(B)

Dániel Barna: 1st exp. results with the SuShi prototypes

35/48

3.5

2.5

1.5

Ξ

р

3

2

shield

inner surface

B profiles

1.5 mm

- From observed nonlinearity one can get **some** info on J_(B)
- At 64 A different parameters give B penetration profiles with same, almost full depth
- Small discrepancy end effect?

Dániel Barna: 1st exp. results with the SuShi prototypes

36/48

FCC Week Berlin, 2017

shield

outer surface

64A

60A

40A

50A

30A

MgB₂: relaxation

- External field on the plateaus (magnet's current is constant)
- Same vertical scale on all plots

Interplay between geometry and shielding currents' dynamics (shielding currents decay \rightarrow effective shielding surface drifting away from Hall sensor)

MgB₂: long-term relaxation

The HTS Shield

Dániel Barna: 1st exp. results with the SuShi prototypes

HTS: expectations

- SuperOx 2G HTS Critical Current: $I_c = 250-500 \text{ A/cm}$ in self-field, T=77 K
- Our moderate B field does not change much...
- Lift factor (improvement at 4.2 K w.r.t. 77 K)
 > 4 for B<1 T
- n=25 layers

$$\Delta B = \mu_0 * I_c * n = 0.8$$
 Tesla

Dániel Barna: 1st exp. results with the SuShi prototypes

HTS: Shielding performance

HTS: Shielding performance

Dániel Barna: 1st exp. results with the SuShi prototypes

HTS: penetration at low field!

Dániel Barna: 1st exp. results with the SuShi prototypes

HTS: relaxation

Relaxation of external field on the plateaus (H5)

- Same absolute scale on all plots
- Negligible below full penetration, significant above it.

Dániel Barna: 1st exp. results with the SuShi prototypes

3rd prototype – stay tuned!

NbTi/Nb/Cu multilayer sheet

I.Itoh, K.Fujisawa, H.Otsuka: NbTi/Nb/Cu Multilayer Composite Materials for Superconducting Magnetic Shielding, Nippon Steel Technical Report No. 85, January 2002

Dániel Barna: 1st exp. results with the SuShi prototypes

45/48

Prototype comparison

	MgB ₂	HTS	NbTi/Nb/Cu
Price	1	4 x MgB ₂	5 x MgB ₂
Manufacturing	simple (baking 950 °C), diamond or spark machining	easy (from commercial tapes), scalable	heavy machinery (rolling & heat treatments)
Mechanical	hard and brittle	robust	most versatile, ductile, robust
Performance	good	insufficient	best (anticipated from literature)
Comments	manufacturing of long (2-3 m) tubes needs R&D (can be joined)	very wide tapes to avoid helical wrapping?	can the price be reduced drastically?
Dániel Barna: 1 st exp. results with the SuShi prototypes		46/48	FCC Week Berlin, 2017

Conclusions

- Simulation: optimized geometry produces homogeneous field at different field strengths, with different superconductor characteristics
- Massless septum configuration is promising up to moderate levels (1 T)
- MgB₂ prototype
 - No flux jumps on the virgin curve
 - Perfect shielding up to 2.6 T with 8.5 mm wall thickness
 - 0.25% relaxation of external field over 6 hours, @ 2.4 T (ok for FCC)
 - Cheap and simple
- HTS tape prototype (helical, multilayer wrap) 🗡
 - Field penetrates already at very low fields (due to geometry?)
 - Full penetration above 0.25 T much below expectations. Degraded J_c ?
 - Relaxation...
- NbTi/Nb/Cu multilayer ? (this year...)

Outlook

- Candidate #1 so far is MgB₂
- With the best candidate:
 - Test fast & reliable detection of flux jumps/quench
 - Test massless configuration
 - Develop a dedicated SC coil & shield to produce a homogeneous field

Acknowledgements & Colleagues

- FCC Collaboration
- CERN SM18 (M. Bajkó, H. Bajas, M. Strychalski, et al)
- CERN TE-MSC-MM (C. Petrone, M. Buzio)
- European Commission (FP7/EUCARD-2, grant agreement no. 312453)
- Wigner RCP (K. Brunner, A. Német)
- M. Atanasov, J. Borburgh, W. Bartmann, F. Burkart, A. Sanz Ull, R. Ostojic, G. Kirby, A. Verweij, L. Bortot, A. Yamamoto, G. Giunchi, S. Molodyk

Backup slide #1

50/48

Dániel Barna: 1st exp. results with the SuShi prototypes

G. Giunchi, "The MgB 2 bulk cylinders as magnetic shields for physical instrumentation" in 20th IMEKO TC4 Int. Symp., Benevento, Italy, pp. 1033–1037, 2014. (link)