

FCC Week 2017, Berlin Towards a conceptual design for FCC cryogenics

Laurent Tavian, CERN, ATS-DO

On behalf of the FCC cryogenics study collaboration

1st June 2017

- Introduction: FCC cryogenic study organization
- FCC-hh cryogenics overview
- FCC-ee cryogenics overview
- HE-LHC cryogenics overview
- Conclusion

FCC cryogenics studies

CERN

New w/r to Roma

- Introduction: FCC cryogenic study organization
- FCC-hh cryogenics overview
- FCC-ee cryogenics overview
- HE-LHC cryogenics overview
- Conclusion

FCC-hh: tunnel cryogenics

Beam Tube Stabilzing Ribs Cooling Channels Shield Copper Layers

CER

Beam screen, 40-60 K (50 bar) Magnet thermal shield 60 K (44 bar) Support post

В

)C

Е

D

40 K supply header (50 bar) 60 K return header (44 bar) 4 K VLP pumping line (15 mbar) Quench buffer, 40 K (1.3 bar) 4.6 K SHe header (3 bar) Vacuum vessel Bayonet heat exchanger, 1.85 K saturated Cold mass, 1.9 K (1.3 bar)

Temperature level	Static [W/m]	Dynamic [W/m]	Total [W/m]
1.9 K	0.5	0.9	1.4
40-60 K	9	62	71

FCC-hh cryogenic layout and architecture

Qcm CM

Qbs Qts

Contributions of TU Dresden and CEA/SBT

FCC-hh Nominal operation

He cycle Ne-He cycle

BS cooling with cold circulator (+130 kW @ 40-60 K)

BS cooling with warm circulator +140 kW @ 40-60 K and +500 kW @ 300 K → Less efficient but good for redundancy and needed for cool-down and warm-up operation

Nominal loads						
Beam screen	Qbs	530 kW				
Thermal shield	2 Qts	90 kW				
Cold-mass	Qcm	12 kW				
Pumping line	Qb	2 kW				
Cuurent leads	Qcl	85 g/s				

FCC-hh Half-cell cooling loop

FCC-hh Superfluid helium cooling loop parameters

Variable	Unit	LHC	FCC
Unit cooling length	m	106.9	107.1
Sector cooling length	m	2900	8400
Average heat load nominal (installed) capacity	W/m	0.40 (0.83)	1.38 (<mark>2.44</mark>)
Bayonet HX inner diameter	mm	53.4	83.1
Feeder pipe inner diameter	mm	10.0	15.0
Thickness bayonet HX pipe wall	mm	2.3	5.0
Joule-Thomson valve inlet temperature	К	2.18	2.18
Free longitudinal cross-section area	cm2	60	156
DT max Pressurized-saturated Hell	тK	50	50
Cold mass operating pressure	bar	1.3	1.3
Header B diameter	mm	270	500 (630)
Heat load on header B	W/m	0.11	0.24
Pumping pressure at cryoplant interface	mbar	15	15
Maximum cold-mass helium temperature	К	1.9	1.98 (1.9)

FCC-hh Beam-screen cooling loop parameters

Main parameter	Unit	LHC	FCC
Unit cooling length	m	53.4	107.1
Sector cooling length	m	2900	8400
Average BS nominal dynamic capacity	W/m	1.6	62
Supply pressure	bar	3	50
Supply helium temperature	K	5	40
Max. allowed BS temperature	К	20	60
BS helium outlet temperature (nominal)	K	20	57
Minimum BS temperature (nominal)	К	5	43
BS pressure drop (nominal)	bar	0.5	3
ΔP control valve (nominal)	bar	0.8	1
ΔP supply and return header (nominal)	bar	0.4	2
Total cooling loop pressure drop	bar	1.7	6
Supply/return header diameter	mm	100/150	250/250
Exergetic efficiency (distribution only)	%	76	86
Total exergetic eff. (with cold circulator)	%	N/A	82
Total exergetic eff. (with warm circulator)	%	?	74

12 time [hr]

8

0

16

20

Transient modes

Working at constant
nominal flow to handle the
severe transient during
energy ramp-up
Working at constant He
inventory to avoid big mass
release and refill (i.e.
pressure increase during
energy ramp)

Large inertia of the distribution system → time constant of~ 4 h → OK with the capacity adaptation of the cryoplants → In high luminosity operation (4 h of stable beams), the cryoplants will

be never in steady-state C. Kotnig H. Rodrigues

FCC-hh electrical consumption

RH: resistive heating
BGS: beam-gas scattering
BS: beam screen
CM: cold mass heat-inleaks
CL: current lead
BS cir.: Beam screen circulator (warm)
TS: thermal shield
IC: image current
SR: synchrotron radiation

Carnot efficiency:

- Ne-He plants: 40 %

- Helium plants: 28.8 %

Isentropic efficiency

- cold compressors: 75 % per stage
- Warm circulator: 83 %

FCC-hh Main cryogenic distribution

FCC-hh He inventory

Cold mass He inventory : 33 I/m (scaled from LHC) Distribution inventory dominated by the beam-screen supply and return headers

FCC He inventory: ~800 t ! (~6 LHC He inventory)

FCC-hh Storage management

GHe storage - 60 (250 m3, 20 bar)
 Quench buffer - 156 (250 m3, 20 bar)
 GHe storage - 10 (250 m3, 50 bar)
 Ne-He storage - 10 (250 m3, 50 bar)
 GNe cylinders - 10 (10 m3, 200 bar)
 LHe storage - 50 (120 m3)
 LHe boil-off liquefier - 6 (150 to 300 l/h)
 LN2 storage - 6 (50 m3)

Project breakdown structure

FCC-hh																											
	F D S		Total	А	S A-B	В	S B-C	с	S C-D	D	S D-E	E	S E-F	F	S F-G	G	S G-H	н	S H-I	I	S I-J	J	S J-K	к	S K-L	L	S L-A
Pofrigoration	Ne-He cryoplant	[nb]	10	1				2				2				1				2				2			
Reingeration	Helium cryoplant		10	1				2				2				1				2				2			
	Vertical cryogenic distribution	[m]	2218	304				514				264				354				340				442			
	Local cryogenic distribution	[m]	150	15				30				30				15				30		-		30			
Т	Tunnel cryogenic distribution	[m]	86600	100	4700		8400	100	8400		8400	100	8400		4700	100	4700		8400				8400	100	8400		4700
Distribution	Cryoplant interconnection box	[nb]	6	1				1				1				1		-		~	٦Ľ	C		1			
S	Sub-cooling HX	[nb]	800		40		80		80		80		80				~C	+	\X \	1.	,		80		80		40
	Quench valves	[nb]	1200		60		120		120		120				c	5	6-				120		120		120		60
	BS flow meter	[nb]	800		40		80		80		•	. r	C)U))		ŦŪ		80		80		80		80		40
	Helium gazeous storage (20 bar)	[m3]	15000	1500					1		11	ינ				1500				3000				3000			
ŀ	Helium gaseous storage (50 bar)	[m3]	2500	250	Γ	-		2	0	Ŋ	-					250				500				500			
	Ne-He gaseous storage (50 bar)	[m3]	2500	250		K	35					500				250				500				500			
Storago	Ne gaseous storage [200 bar]	[m3]	100	10				20				20				10				20				20			
Storage	LHe storage	[m3]	6000	600				1200				1200)			600				1200				1200			
	LHe storage loss liquefier	[nb]	6	1				1				1				1				1				1			
	LN2 storage	[nb]	6	1				1				1				1				1				1			
	Quench buffer	[m3]	39000	2000		3500		3500		3500		3500)	3500		2000		3500)	3500		3500		3500		3500	
	Quench line	[m]	4411	404		366		357		372		232		492		454		368		270		415		321		360	
Infra-	He ring line	[m]	104411	404	4900	366	9600	357	10500	372	10500	232	9600	492	4900	454	4900	368	9600	270	10500	415	10500	321	9600	360	4900
structure	Warm recovery line	[m]	91011	504	4700	366	8400	457	8400	372	8400	332	8400	492	4700	554	4700	368	8400	370	8400	415	8400	421	8400	360	4700
	Other infrastructure	[%]	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Instrumentati	on & controls	[%]	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
First helium in	ventory	[t]	800	1	43		78	1	78		78	1	78		43	1	43		78	1	78		78	1	78		43

- Introduction: FCC cryogenic study organization
- FCC-hh cryogenics overview
- FCC-ee cryogenics overview
- HE-LHC cryogenics overview
- Conclusion

FCC-ee RF data

			Z		W				ZH		ttbar	
		1 cel	, 400 MF	Hz, 4.5 K	2 cell, 4	2 cell, 400 MHz, 4.5 K			00 MHz,	4.5 K	2 cell, 400 MHz, 4.5 K	
		Beam 1	Beam 2	Booster	Beam 1	Beam 2	Booster	Beam 1	Beam 2	Booster	Beam 1 & 2	Booster
RF voltage	[MV]	80	80	80	800	800	800	3000	3000	3000	10000	10000
Frequency	[MHz]	400	400	400	400	400	400	400	400	400	400	400
# cell per cavity	[-]	1	1	1	2	2	2	2	2	2	2	2
E acc	[MV/m]	2.15	2.15	2.15	10	10	10	10	10	10	10	10
V cav	[MV]	0.81	0.81	0.81	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
# cav	[-]	99	99	99	107	107	107	400	400	400	1333	1333
RF system length	[m]	176	176	176	229	229	229	860	860	860	2866	2866
Cav length	[m]	1.78	1.78	1.78	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15
Q Dyn / cav @ 4.5 K	[W]	2.4	2.4	0.24	105.2	105.2	10.52	105.2	105.2	10.52	105.2	10.52
T operation	[K]	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Q stat	[W/m]	5	5	5	5	5	5	5	5	5	5	5
Q Dyn	[W/m]	1.4	1.4	0.14	49	49	4.9	49	49	4.9	49	4.9

FCC-ee tunnel cryogenics

FCC-ee cryogenic capacity (2 main + 1 booster rings)

Machine	Q stat [kW]	Q dyn [kW]	Qtot [kW]	Cryoplant #	Cryoplant size [kW@4.5 K]
Z	2.9	0.5	3.4	2	1.7
WW	3.7	24	27	2	14
ZH	14	88	102	4	26
ttbar	31	154	185	4 (8)	<mark>46</mark> * (23)

Without operational margin !

*: Outside State-of-the-Art

ERN

FCC-ee: Cryogenics electrical consumption

FCC-ee storage management

- Introduction: FCC cryogenic study organization
- FCC-hh cryogenics overview
- FCC-ee cryogenics overview
- HE-LHC cryogenics overview
- Conclusion

HE-LHC beam screen operating temperature

summary of beam-induced heat loads

	LHC		HE-LHC	
nivv/mper	nominal	nominal/ult.*	nominal/ult.*	nominal/ult.*
aperture		LHC bs at 20 K	LHC bs at 50 K	FCC bs at 50 K
synchrotron	165	4000/5500	4000/5500	4000/5500
radiation				
image current	160	1140	2160	2230
electron cl.**	445	1100	1100	100
total at bs T	770	6240/7740	7260/8760	6330/7830
beam-gas	24	88/95	88/95	88/95
scattering (heat				\ /
at 1.9 K)***				
*the only difference	e between ulti	mate and nominal i	s the beam energy	(13.5 vs 12.5 TeV)

for SEY=1.4 and 25 ns spacing *for 100 h lifetime and uniform gas pressure

12/12/2016 HE-LHC Meeting

rank Zimmermann, beam-induced heat load

40-60 K temperature range is the best for HE-LHC

HE-LHC BS pressure drop

2 circular cooling channels per BS (LHC like) For exergetic efficiency: DP < ~5 % of the operating pressure

HE-LHC specific heat loads

		FCC-hh	[W/m]	HE-LHC	[W/m]
Temperature level	40-60 K	1.9 K	40-60 K	1.9 K	
	CM supporting system	2	0.13	2	0.13
	Radiative insulation		0.13		0.13
Static heat inlocks	Thermal shield	3.1		3.1	
Static field filleaks	Feedthrough & vac. barrier	0.2	0.1	0.2	0.1
	Distribution	4	0.1	3	0.1
	Total static	9.3	0.46	8.3	0.46
	Synchrotron radiation	57	0.2	8	0.2
	Image current	5.4		4.46	
Dynamic heat loads	Resistive heating		0.3		0.3
Dynamic near loaus	e-clouds			0.2	
	Beam-gas scattering		0.45		0.18
	Total dynamic	62	0.95	13	0.68
Total		72	1.4	21.0	1.1

1.8 K LHC refrigeration units to be replaced (Existing units limited to 2.4 kW)

Upgrade of existing LHC 4.5 K cryoplants to be studied

\rightarrow present capacity:

Temperature level	LHC Sector cooling capacity: HL/LL
50-75 K	33/31 kW
4.6-20 K	20.6/17.5 kW
4.5-290 K	41/27 g/s

Temperature level	HE-LHC Sector cooling capacity
40-60 K	61 kW
1.9 K	3.3 kW
40-290 K	54 g/s

Equivalent to ~18 kW @ 4.5 K (Without operational margin)

HE-LHC: Reuse of the existing tunnel cryo distribution (QRL)?

- Cooling of HE-LHC sectors with the existing QRL seems difficult:
 - Header D (quench buffer) could be too small to buffer the CM inventory discharge during quench.
 - BS cooling 40-60 K instead of 4.6-20 K → Modification of internal circuits could be quite invasive
 - Existing hardware (valves, HX...) are undersized
 - Cell length is different → existing QRL service modules are shifted with respect to the position of the new Quad → invasive cryo-extensions are required.
- HE-LHC design requires larger pipe diameter (D, E, F) → i.e. will not ease the tunnel integration exercise.

Space reservation for flanges, bellows and welding/cutting machines

Header	DN
	[mm]
В	270
С	100
D	200
E	100
F	100

- Introduction: FCC cryogenic study organization
- FCC-hh cryogenics overview
- FCC-ee cryogenics overview
- HE-LHC cryogenics overview
- Conclusion

Conclusion: schedule

Next important steps:

- FCC-hh: Complete the engineering studies with our industrial partners (Air Liquide and Linde) -
- FCC-hh & HE-LHC: Cryogenic transients during resistive transitions \rightarrow impact on quench valve size & number, on cold-mass design pressure and on header D diameter.
- FCC-hh & HE-LHC: Energy buffering during magnet current ramp-up and fast ramp-down \rightarrow impact on helium inventory (is 33 l/m (400 t) sufficient ?)
- FCC-ee: Refine the staging scenario with 400 MHz (4.5 K) and/or 800 MHz (2 K). -
- All: Operational margin discussion/definition \rightarrow impact on capital and operation cost -