

www.cea.fr

Technical Specifications for industry studies on the FCC cryogenic system

Francois Millet on behalf of FCC cryogenic team

- 1. Introduction
- 2. Technical Requirements
 - Overall layout & architectures
 - Operation modes
- 3. Industry studies
 - Work breakdown
 - Present status

FCC needs and constraints

See for details, presentation L. Tavian "Towards a conceptual design for FCC cryogenics"

(50% of total heat loads)

□ 100 TeV hadron collider in a 100 km long tunnel

=> FCC_hh defining infrastructure requirements

Development of large-scale cryogenic infrastructures to define a reliable, sustainable and efficient solution

- Cryoplant capacity larger than the state-of-the-art
 - (50 to 100 kW equivalent at 4.5 K)
- Non-conventional thermal load distribution with large thermal loads above 40 K

Main FCC hh cryogenic users :

- Beam Screen and Thermal Shields
 40-60 K cooling
- Magnets and Cryodistribution
 1.9 K cooling

HTS Current Leads 40-300 K cooling

=> Total power consumption ~200 MW with conventional cryoplants

Ne-He 40-300 K cryoplant – Existing plants and TUD pre-study

He cryoplant - Existing large-scale 4.5K Refrigerators and Liquefiers

He 1.9K cryoplants – Design options

He 1.9K cryoplant – CEA/SBT Pre-study

It is time to assess industrial solutions for FCC cryoplants

=> An engineering study is started with major European companies with the objectives

Linde

- To define an alternative option "Optional Solution 20 cryoplants" with magnets at 1.9 K
- To identify the technical risk items and the innovative technologies for more sustainable and more efficient large-scale cryoplants

- 1. Introduction
- 2. Technical Requirements
 - Overall layout & architectures
 - Operation modes
- 3. Industry studies
 - Work breakdown
 - Present status

Technical requirements : Overall infrastructure description

L.Tavian/ CERN

- The **cold mass (CM)** of the superconducting magnets operating at 1.9 K,
- The beam screens (BS) & thermal shields
 (TS) requiring forced flow cooling between 40 K and 60 K,
- The HTS current leads (CL) requiring forced flow cooling between 40 K and 300 K.

Technical requirements – FCC_hh cooling architecture

Technical requirements : Cryogenic architecture & study limits

FCC Week 2017 - F.Millet

Technical requirements : Process Flow Diagram

Technical requirements : "High" and "Low" Operation Modes

Cryogenic power requirements for one FCC_hh sector (one cryoplant)

Assumptions : « High » & « Low » modes = maximal & minimal cooling requirements

Loads	Cooling circuit	Temp. range	"High" mode 10 cryoplants	"Low" mode 10 cryoplants	"High" mode 20 cryoplants
Qcm [kW]	Magnets	101	12	4	6.4
Q _B [kW]	Cryodistribution	1.9 K	2	2	1.1
Qbs [kW]	Beam screens		530	3	280
Qts [kW]	Thermal shields	40-60 K	90	90	50
Qcl [g/s]	Current leads	40-300 K	85	43	67

Beam screen loads : turn-dow capability up to factor 6

□ Magnet loads : turn-dow capability up to factor 3 (similar to LHC)

Technical requirements : Cooldown & Warm-up

- □ **Primary loop** with HP He forced flow circulation (cold or warm circulators for nominal and cooldown/warmup modes ?)
- Secondary loop based on Turbo-Brayton cycle operating with HP gas mixture (Ne-He) and with cooling capacities from 0.2 to 1 MW at 40 K and cooldown/warmup functions ?

- **Two interfaces with cryodistribution :**
 - Line E for 40 K HP GHe supply
 - Line F for 60 K HP GHe return

Technical requirements : Magnets and HTS Current Leads cooling

- □ Modified Claude cycle (similar to LHC)
 - with cooling capacity
 - up to 12 kW at 1.8 K for magnets
 - up to 85 g/s at 40 K for current leads
 - with or without precooling (N2 or Ne-He) ?

□ Magnet cooling = integral or mixed cycle for VLP compression

□ Two interfaces for magnets cooling:

- Line B for VLP GHe return
- Line C for SHe supply at 4.6 K
- □ Two interfaces for HTS current leads:
 - Line D for 40 K GHe supply
 - Line W for 290 K GHe return (D and W not correctly shown on figures)

- 1. Introduction
- 2. Technical Requirements
 - Overall layout & architectures
 - Operation modes
- 3. Industry studies
 - Work breakdown
 - Present status

Performance of the contracts : Work breakdown

Phase #	Task #	Title	Objectives	Open issues ?				
Phase 1		Reference solution selection	Define and select the appropriate architecture, process					
	Task 1	He plant and Magnet-CLs loops definition	cycles and main components with expected efficiency 30 to 40% and overall availability at 99 Efficiency a components selection?					
	Task 2	Ne-He plant and BS-TS loops definition						
Phase 2		Reference solution performances	Assess performance schemes & contracted Reference solution for:					
	Task 3	Cool-down & Warmup	 <u>Coche dana La mup</u> <u>Tuwwn capability</u> 					
	Task 4	Turn-down capability evaluation						
Phase 3		Optional solution design	similar objectives as Reference solution					
	Task 5	Option 20 cryoplants						
Phase 4		Identification of innovative technologies	Identify the technical risk items and is and is of cost ologies					
	Task 6	Powerful Turbo-Brayton Fridges	Propose a <u>roadmap t</u> e	and for optimises reliability.				
	Task 7	Large warm and cold centrifugal compressors and circulators studies	R&D rod and efficiency	ciency, available a				
Phase 5	Task 8/9	Cryoplant comparison and cost estimate	Compare the technica Estimate the costs	al options				

□ First half 2016 : Specification preparation and CERN Price inquiry based on studies at CERN, CEA, TU Dresden and TU Wroclaw

- □ September 2016 : Industry first offers
- □ Second half 2016 : Technical and commercial exchanges for offer review

First half 2017 : CERN-Industry exchanges for contract finalisation one major issue on Confidentiality and Intellectual Property !

□ 24th of May 2017 : LINDE contract signature

□ June 2017 : Kickoff meeting with LINDE

=> industry engineering studies should be performed in 2017 in time for CDR

Thank you for your attention

		Reference solution " <u>High" mode</u> 10 cryoplants			Reference solution " <u>Low" mode</u> 10 cryoplants			Optional solution " <u>High" mode</u> 20 cryoplants		
Line		Temp. [K]	Pres. [kPa]	Flow [kg/s]	Temp. [K]	Pres. [kPa]	Flow [kg/s]	Temp. [K]	Pres. [kPa]	Flow [kg/s]
С	Supercritical helium supply	4.6	300	0.63	4.6	300	0.21	4.6	300	0.32
В	VLP superfluid helium return	3.66	1.5	0.63	4.89	1.5	0.21	3.70	1.5	0.32
E	40 K HP gaseous helium supply	40	5000	5.69	40	5000(*)	0.8(*)	40	5000	3.0
F	60 K HP gaseous helium return	60	4400	5.69	60(*)	4900(*)	0.8(*)	60	4400	3.0
D	40 K LP gaseous helium supply	40	130	0.085	40	130	0.043	40	130	0.067
W	Warm LP gaseous helium return	290	110	0.085	290	110	0.043	290	110	0.067

^(*) tbc to fulfill circulator design

