

FCC Civil Engineering Optimisation and Design Development

John Osborne & Joanna Stanyard (SMB - Site Engineering - FAS Section)

With acknowledgements to I&O and all FCC study teams

- Brief history of previous layouts and positions
- Layout & siting progress since Rome 2016
- Design development of structures
- Cost & Schedule study
- Future steps

• European Strategy, Krakow 2012: 80km Options

During pre-feasibility an 80 km layout was considered with 2 distinct positions: Jura mountains v lakeside

• Kick-off meeting, Geneva 2014

The two 80 km options were reviewed in addition to a 47 km option.

- Washington 2015: Multiples of LHC Considered in 80 km, 87 km, 93 km, 100 km. In addition to the 80 km option, other multiples of the LHC were considered: 87 km, 93 km, 100 km.
- Rome 2016: Intersecting v non-intersecting 100 km options considered
- August 2016: 97.75 km options introduced in comparison to Intersecting option (V1) A variety of options were considered to identify the optimal layout for the machine whilst fitting within the geological constraints.

1. Geology along alignment:

- Maximum proportion of tunnel in <u>molasse</u>.
- Avoid <u>limestone</u> formations wherever possible due to associate risk of water ingress and karsts.
- Avoid water bearing moraines wherever possible due to risk of water ingress and potential contamination of water sources.
- Minimise overburden.

2. Shaft length:

- Minimise total shaft length.
- Avoid individual very deep shafts, particularly at experimental points where there are multiple shafts.

3. Geology of shafts and caverns

- The greater the depth of the moraine before reaching the molasse layer, the more costly/ time consuming the construction.
- Cavern construction requires good ground conditions.

4. Environmental Constraints

- Avoid protected water sources.
- 5. Shaft Surface Locations
 - Initial assessment to avoid clashes with buildings, natural features or protected zones.
 - Followed by a more refined assessment of feasibility including potential access to the site.
- 6. Injection Line Length

+ Additional 'softer criteria'

- The round of optimisation undertaken in August 2016 led to the selection of the current 97.75 km layout.
- In early 2017 small variations on this layout were assessed that incorporated increased L_sep.

- Reduced straight sections at points J & D enabled the tunnel to fit between Jura and Pre-Alps limestone.
- Introduced potential for significant shaft depth savings.

CERN

ARUP 🖗

* 🔺 💿 😧 🏦 🗳 🗳

нi	σh	liσ	hts:	
	gu	пg	nus.	

Alignment

• Avoids Jura and Pre-Alps limestone.

Query

• Only one sector containing limestone.

Shafts

- Significantly reduced total shaft length.
- Experimental Site at Point A on existing CERN land.
- Avoids extremely large overburden.

			Shaft Depth (m)			Geology	(m)
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limestone
A	152						
в	121						
С	127						
D	205						
Е	89						
F	476						
G	307						
н	266						
L	198						
J	248						
К	88						
L	172						
Total	2449	66	0	492	1892	0	0

Geology Intersected by Shafts Shaft De

Issue: Tunnel excavation through water bearing moraines

- Possible Solutions:
- a) Excavation using a multi-mode earth pressure balanced TBM.
- b) Employ a double-lining method for waterproofing.

Issue: Unavoidable Mandallaz Limestone formation

Possible Solutions:

- a) Drill & Blast excavation method
- b) Systematic exploration ahead of excavation

FCC Week, Berlin 2017

Query

TOT is a bespoke, web-based geological tool. •

ARUP 🕀

- Datasets imbedded: ۰
 - Interpreted geological data, simplified to major types of geology.
 - Topography
 - Hydrological Information
 - Protected areas
 - Existing Boreholes and Geothermal farms
- Very powerful tool for early stage feasibility ٠
 - Quickly assess different layout options.
 - Clear visual outputs for communicating results

100)km quasi-c	ircular 🔹 🔻			
Tunr	nel elevatio	n at centre:3	310m	ASL	
Grad	l. Params				
		Azimuth	(°):	0	
	Slop	e Angle x-x	(%):	0	
	Slor	e Angle y-y	(%):	0	
10				04	
LO	AD	SAVE		CA	LCULA
_		SAVE		CA	LCULA
_	AD	SAVE	Y:	CA	
Alig	AD nment centr 2499367	SAVE	Y:	11121	
Alig	AD nment centr 2499367	SAVE		11121	170
Alig	AD nment centr 2499367	SAVE CP 1		11121	170 CP 2
Aligi X:	AD nment centr 2499367 Angle	SAVE CP 1 Depth		11121 gle	170 CP 2 Depth
Aligi X: LHC	AD nment centr 2499367 Angle	SAVE re CP 1 Depth 121m		11121 gle	170 CP 2 Depth 7

John Osborne, Joanna Stanyard (SMB-SE-FAS)

FCC Week, Berlin 2017

- TOT is only as powerful as the data behind it.
 - Topographical data is very accurate
 - Certain areas of geological data more accurate than others.
 - Interpreted data from existing maps and boreholes.
 - Site Investigation is required to significantly improve understanding.
- Automation of the tool is a possibility but challenging.
 - Optimisation algorithm such as ROXIE (previously used at CERN for magnet design optimisation) could be used.
 - The challenge is the large number of variables.
 - Not all variables are easily quantified.
 - Potential for automating certain features such as shaft positions once the layout and siting are fixed.

Surface – Initial Concept

Concept for non-experimental point

- Concept based on LHC and Hi-Lumi reference structures.
- Some scaling where deemed appropriate.

- Cost & Schedule Study launched in September 2016
- Two sets of consultants engaged to work independently.

Phase 1

Cost & Schedule estimate for "baseline" single tunnel design.*

Phase 2

Cost & Schedule implications of variations considered:

- Double tunnel design
- Shallow option
- Alternative tunnel diameters
- Alternative shaft diameters
- Alternative cavern dimensions
- ee machine requirements
- Alternative schedule + Inclined access tunnels

<u>Phase 3</u>

Refinement of results from Phases 1 and 2:

- Review to include updates made to baselined design.
- Incorporate desirable variations from Phase 2.

*Some changes have been made since the study was launched including raising the profile and introduction of third shaft at experimental points.

- Tunnel widening required around points A & G to accommodate ee lattice.
- Design is not fully developed: potential for a combination of double tunnel and enlargement caverns to accommodate lattice.
- For Cost & Schedule study: 1.8 km of tunnel widening on either side of IPs at A and G considered.

- Study launched with Amberg Engineering following FCC week 2016 to verify feasibility of inclined access tunnels.
- Main questions:
 - Can a shaft be replaced with a 6.0 m diameter tunnel and a TBM be launched from the bottom?
 - What is the estimate for possible time saving?

- Feasibility of logistics confirmed.
- Confirmed that some time reductions are possible construction of inclined access can start during procurement of TBM.

- 1) <u>Replacing shafts with inclined access tunnels:</u>
 - Shaft F

2) Inclined access between shafts to accelerate program:

- Option a: between I & J and J & K
- Option b: between G & H

Option b is favourable as it is desirable for the installation schedule for 2 of the shorter sectors to be delivered first.

Early schedule results – Baseline

Construction complete in 6 years, 5 months.

- Construction commences with site installation and diaphragm wall construction.
- PM-B excavated first followed by US-B, TBM launched from this cavern for sectors R-AB and R-LA.
- PX-B and UX-B excavated in parallel but have a longer duration due to their larger dimensions.
- Second TBM launched following completion of both caverns.
- Transfer tunnel excavated using Drill & Blast or roadheader.
- Alcoves excavated behind tunnel excavation front and lined during TBM removal.
- Lining of tunnels and caverns completes underground construction.

Early schedule results – Accelerated schedule (1)

- First two sectors complete in 4 years, 8 months.
- Construction complete in 6 years, 5 months.

Early schedule results – Accelerated schedule (2)

- First two sectors complete in 4 years, 11 months.
- Construction complete in 6 years, 5 months.

- Work to refine a cost estimate to an accuracy of +/- 30%.
- Design updates to be incorporated into Phase 3:
 - Additional shaft at each experimental point.
 - New layout and position.
 - New cross-section.
- Fix inclined access positions and incorporate results into study.
- More closely study the schedule implications of the connection to the LHC or SPS.
- Scope for optimising the whole schedule once design and schedule constraints fixed.
- Iterative process of integrating the CE schedule into the full installation schedule.

Civil Engineering for FCC-eh IR – J.L Stanyard Thursday 14:25

High Energy LHC Civil Engineering

SPS beam dump tunnel enlargement

Crossrail – Cross Passage Temporary Frames

• If it is concluded High Energy LHC cannot fit into the current LHC envelope, a technical and cost and study will be launched to evaluate an option to enlarge the cross-section of the existing tunnel.

- Continue to evaluate new layout and position:
 - Confirm shaft and inclined access tunnel locations.
 - Evaluate the risk of construction in the moraines under the lake.
- Confirm civil engineering requirements for ee machine.
- Evaluate cavern and shaft construction methods.
- Develop TOT, potentially working towards automating some features.
- Environmental impact and spoil management study.
- Develop High Energy LHC and FCC-eh studies.
- Site investigation planning.

