

Supply and Distribution of Electrical Energy

FCC week 2017, Berlin

Davide Bozzini - CERN

With the contribution of the FCC Infrastructure & Operation Working Group and CERN Electrical Group members

Outline

- Power consumption estimate
- Availability of electrical power
- Transmission network
- Distribution network
- Arc electrical infrastructure
- Network quality
- •Geneva based related aspects
- Conclusion

Power Consumption Estimate FCC-hh

• FCC week 2015

 First estimate for FCC-hh scaled on 4 x LHC design report and systems estimate when available

• FCC week 2016

• Definition of **maximum target** power consumption for **FCC-hh** at 555 MVA

• FCC week 2017

- Two approaches for FCC-hh
 - Input from machine/ system designers
 - Scaled from LHC real consumption

	FCC	FCC	FCC week 2017		
System	week 2015	week 2016	Machine designers	Scaling from LHC	
FCC-hh	585	555	423	347	
Injectors			122		
Data centers			7		

Values expressed in MVA – Considered Power Factor = 0.9

Injectors requirements and data centres not included

Power Consumption Estimate FCC-ee

• FCC week 2015

Not addressed

• FCC week 2016

 Definition of maximum target power consumption for FCC-ee at 444 MVA

• FCC week 2017

- Input from machine/system designers
- As summarized in the paper ELECTRICAL POWER BUDGET FOR FCC-ee, F. Zimmermann and al.

lepton collider	Z	W	ZH	$t\bar{t}$	LEP2
luminosity / interaction point $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	207 90	19	5	1.3	0.012
total RF power [MW]	163	163	145	145	42
collider cryogenics [MW]	3 2	5	23	39	18
collider magnets [MW]	3	10	24	50	16
booster RF & cryogenics [MW]	4	4	6	7	N/A
booster magnets [MW]	0	1	2	5	N/A
pre-injector complex [MW]	10	10	10	10	10
physics detectors (2) [MW]	10	10	10	10	9
cooling & ventilation [MW]	47	49	52	62	16
general services [MW]	36	36	36	36	9
total electrical power [MW]	276 ~275	~288	~ 308	~364	~ 120

Values expressed in MW – Considered Power Factor = 0.9

Power Requirements at each FCC-hh Point

• Power distribution location according to systems layouts

Range of FCC-hh power requirements at each point

Availability of power at European grid level

- Based on mid long term plan (2030) of the network operator
- Additional **200 MW are available** simultaneously at each 400 kV source (I,II, III)
- Total power higher than 600 MW will require **major hardware changes** at the European grid level
- Maximum available power in case of N-1 availability of the sources might **impact the transit of power at grid level**
- Power availability on existing sources operated at lower voltages (230 kV and 132 kV) is **included in the same budget** (3 x 200 MW)

Transmission Network

- 3 existing 400 kV sources of the European grid connected to 3 incoming 400 kV substations located on the nearest FCC points and a transmission ring linking the 12 substations located at each point
- Radial powering of FCC points from the existing sources. A transmission ring might be necessary for operability and availability purposes
- Optimization by powering zones at different voltage levels with a topologies

Transmission Network Operating Modes

- Power required by each source
- Transmitted power between neighbouring points

Degraded scenario is the extreme considering

- Loss of source I supplying the injectors
- FCC-hh kept operational with beam

Transmission Network Dimensioning Baseline

- The power loads of the three sources and of each transmission ring segment are calculated for the unavailability of each one of the three sources.
- Maximum value among the three calculated is retained for dimensioning purposes
- The network is reconfigured to equally distribute the power on the two remaining available sources
- Two machine states are calculated
 - A: FCC-hh fully operational with beam
 - B: FCC-hh in stand-by mode and injectors OFF

Transmission Network Substations Dimensioning

7 X 2 X 60 MVA (A-C-E-G-H-I-K) 5 x 2 x 25 MVA (B-D-F-J)

Surface

Transmission Network Installed Power

- Installed power
 - Is determined from accelerator power requirements and network operating modes
 - Is the input for the infrastructure **dimensioning**
 - Is the input for the infrastructure **cost estimate**
 - Contributes to power losses

Losses calculation example:

- Typical transformer efficiency of 0.98 and considering a power factor of 0.9 with all transformer loaded at 30-40 % of their nominal power rate
- Transformers losses in nominal configuration are of the order of 30 to 40 MW
- These losses shall be included in the total budget

_	Power	rating [M	VA]	Transformers	Installed power [MVA]	
Point	220	60	25	Transformers x point		
Α	2	2	0	4	520	
В	0	0	2	2	50	
С	0	2	0	2	120	
D	0	0	2	2	50	
Е	2	2	0	4	520	
F	0	0	2	2	50	
G	0	2	0	2	120	
Н	0	2	0	2	120	
I	0	2	0	2	120	
J	2	0	2	4	450	
K	0	2	0	2	120	
L	0	0	2	2	50	
Tot. quantity	6	14	10	30		
Tot. installed Power [MVA]	1320	840	250		2410	

Distribution Network

Types of Networks for Accelerators

Type of network	End users voltage level	Loads type	Users individual power range	Unavailability duration (in case of main supply outage)	Topology	Infrastructure complexity
Machine	24 kV 3.3 kV 400 V	Power converters, cooling and ventilation motors, radio frequency	200 W To 1000 kW	Until return of main supply	Radial supplyFull redundancy	 Passive components (MV switchgears, transformers, LV switchboards)
General Services	400 V	Lighting, pumps, vacuum, wall plugs	50 W To 200 kW	Until return of main or secondary supply	 MV distribution loop LV radial supply Back up sources 	- Passive components
Secured	400 V	Personnel safety Lighting, pumps, wall plugs, elevators	5 W To 100 kW	10 – 30 seconds	 MV distribution loop LV radial supply 	- Active (diesel engine) and passive components
Uninterruptable	400 V	Personnel safety : evacuation and anti- panic lighting, fire-fighting system, oxygen deficiency, evacuation Machine safety : sensitive processing and monitoring, beam loss, beam monitoring, machine protection	5 W To 100 kW	None (continuous service)	 MV or LV distribution radial distribution 	 Active and passive components Local energy storage (batteries)

Distribution Network Baseline diagram

- Typical voltage rating **400 V, 3.3 kV up to 36 kV**
- Indoor substations
- All distribution networks **supplied by the transmission** network
- Redundancy to grant required level of availability, operability and maintainability
- Secured loads are part of the general services

Distribution Network Second Source of Supply

- Supplied from local grid at voltage ratings comprised from 18 kV to 20 kV
- Limited power availability **2 to 5 MW**
- In case of transmission network outage automatic switch to the second source supply
- Machine network not supplied
- Commuting time **2 to 5 seconds**

Distribution Network Third Source of Supply

- Islanded diesel power stations connected to distribution network
- Typical power rating **1 to 5 MW**
- In case of transmission network outage and second source unavailability automatic switch to the third source of supply
- Machine network not supplied
- General services not supplied
- Commuting time **10 to 30 seconds** corresponding to the start up of the diesel engines

Distribution Network

Uninterruptable Power Supply

- Supply of uninterruptable loads only
- Power rating from **50 kW up to 2 MW**
- In case of transmission network outage, second and third sources unavailability **loads remains supplied** thanks to battery stored energy
- Availability depends from required autonomy typically ranging from 10 min to 2 hours
- Autonomy is proportional to stored energy (quantity of batteries)

Arc Electrical Infrastructure Users and Systems

- Loads homogeneously distributed over more than <u>9 km</u> of continuous tunnel
- End users supplied at low voltage **400 V ac**
- Three types of network required:
 - General services
 - Secured
 - Uninterruptable
- Critical systems related to:
 - Personal safety
 - Machine safety
- Critical systems requiring uninterrupted double redundant supply

Arc Electrical Infrastructure Requirements

- Maximum 400 V ac linear distribution distance from transformer is **750 m** and depends on:
 - Homogeneous distribution of loads
 - Maximum acceptable voltage drop at the end of radial distribution
 - Efficient protection and selectivity coordination to efficiently handle electrical faults
 - Acceptable cross-section vs. cost ratio of copper/aluminium cables

Load		ver consumption te* [kW]
	1 km	1 alcove
General services	26.17	27.08
Uninterrupted	8.25	3.63
Secured	1.80	5.99
Power transformers		2.08
Total	36.22	38.78

* Calculated from LHC real consumption and scaled to FCC-hh

Arc Electrical Infrastructure

Alcoves Requirements

- Located **in the arc every 1500** m for the installation of:
 - Electrical infrastructure equipment
 - Users systems and equipment
 - Systems concentrators such as fire detection, emergency stop,
 - Electronic equipment sensitive to tunnel radiation levels
 - Optical fibre patch panels
- Compartmented area with dedicated **ventilation infrastructure**

Arc Electrical Infrastructure RAMS Aspects

- Non exhaustive list of characteristics to consider at conceptual design phase concerning the arc distribution
- Separate functionalities R
- Redundancy at all voltage levels and at equipment / systems levels – M
- Centralize functionalities M
- Avoid tunnel installation of active systems M
- Avoid energy storage elements in tunnel S

Arc Electrical Infrastructure High Voltage Distribution Topology

- One general services and one uninterruptable high voltage network deserving from surface the alcoves in the arc.
- The general services network is operated in **closed loop mode**.
- The uninterrupted network is structured with a **double redundancy** scheme.
- High-to-low voltage transformer scheme located in each alcove will generate redundant general services and uninterrupted low voltage networks

Arc Electrical Distribution Baseline Scheme

General services

- Two loops from two neighbouring points covering each half arc
- Coupling between loops in the middle of the arc for degraded mode operation
- Might require end of loop voltage compensation

• Uninterruptible

- Double redundant scheme
- Full arc feed from both neighbouring points
- No active equipment and energy storage in the alcoves

Arc Electrical Distribution

Network availability Example: Emergency Stop Trip in The Tunnel

General services

- The concerned loop segments are opened
- Non concerned areas remains supplied

• Uninterruptible

• One out of the two redundant supplies remains always available and energized from the two adjacent alcoves

Network Quality

- The quality of the power for FCC may be affected by external causes
 - Harmonics generated **by power transformers energization** on the European grid
 - Voltage drops due to faults on the grid, drops mainly due to lightning density in the neighboring area (300 km radius)

* Image of SMES: Courtesy of Brookeaven Lab, as Presented at theTenth EPRI Superconductivity Conferen ce, Tallahassee, FL, Oct. 12, 2011

Geneva Based Related Aspects

- Current civil engineering baseline includes 4 access points on Swiss and 8 access points on French territory
- The three main sources are located in France
- Swiss and French local (second) sources are operated respectively at the following different voltage levels 18 kV and 20 kV
- Access points are located in **urbanised and agricultural areas**

Space Requirements Outdoor / Indoor Substations

<mark>A, E, J</mark>

160 m

B-C-D-F-G-H-I-K-L

400 kV Air insulated

400 kV Gas insulated

400 kV Oil insulated type transformer

145 kV Dry type transformers

Conclusions

With respect to the CDR ...

- Powering of the FCC-hh and FCC-ee from the European grid **Feasible**
- Baseline transmission and distribution layout for FCC-hh Available
- Functional concept for the electrical distribution in the arcs for the FCC-hh Available
- The same exercise for FCC-ee and HE-LHC To be initiated
- Inputs for an FCC-hh electrical infrastructure cost and schedule review based on the proposed baseline **Available**

... and from a conceptual design study point of view

- Comparative study for the transmission line between points To be completed
- Power consumption estimates and location To be continued

Thank you for your attention

