

Markus Klute

FCC Week, Berlin - 05/30/2017

➡How well do we need to measure Higgs couplings?

- to be sensitive to a deviation δ , the measurement needs a precision of at least $\delta/3$, better $\delta/5$
- implications of new physics scale on couplings from heavy states or through mixing

How large are potential deviations from BSM physics?

$$g = g_{
m SM} \; [1+\Delta] \;\; : \;\; \Delta = \mathcal{O}(v^2/\Lambda^2)$$

Testing multi-TeV scale with sub-percent level measurements There is no strict limit to the precision needed!

Case for Higgs precision

$\frac{\Gamma_{\rm 2HDM}[h^0 \to X]}{\Gamma_{\rm SM}[h \to X]}$	type I	type I type II leg		flipped	
VV^*	$\sin^2(eta-lpha)$	$\sin^2(eta-lpha)$	$\sin^2(eta-lpha)$	$\sin^2(eta-lpha)$	
$\overline{u}u$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	
$ar{d}d$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	
$\ell^+\ell^-$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	

arXiv:1310.8361

FCC-ee Higgs Program

Exploiting a very large Higgs boson sample, produced under clean experimental conditions, and collected with superb precision detectors

Total Integrated Luminosity (ab-1)

Number of Higgs bosons from $e^+e^- \rightarrow HZ$

Number of Higgs bosons form fusion process

Higgs coupling to Z bosons

Recoil method provides unique opportunity for model independent measurement of HZ coupling

- Higgs events are tagged Higgs decay mode independent
- expected precision ~0.5% on ZH cross section
- using only leptonic Z decays and only measurement at 240 GeV so far

Total Higgs boson width can be extracted from a combination of measurements in a model independent way

• tagging Higgs final states

$$\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow ZZ) \propto \frac{g_{HZ}^4}{\Gamma_H}$$

• measurements of vector boson fusion production at 350 GeV combination of all measurements

Higgs Boson Couplings

Precision Higgs coupling measurements

- absolute coupling measurements enabled by HZ cross section measurement
 - only leptonic modes used so far
- tagging individual Higgs final states
- data at 350 GeV constrain total width
 - \odot only used H→bb in fusion production so far
- couplings extracted from model-independent fit
- In statistical uncertainties are shown for 5ab⁻¹@240 GeV and 1.5ab⁻¹@350GeV (from arXiv:1308.6176)
 - In all measurements are under review / are being redone
 - most result use CMS detector performance and will be improved
- optimization of relative size of datasets (240 GeV and 350 GeV) to be done

in %	FCC-ee 240 GeV	+FCC-e 350 Ge
g нz	0.21	0.21
9 нw	1.25	0.43
G нь	1.25	0.64
ਉ Hc	1.49	1.04
G Hg	1.59	1.18
g H _τ	1.34	0.81
Ο Ημ	8.85	8.79
Ο Ηγ	2.37	2.12
Гн	2.61	1.55

Higgs Boson Couplings

Comparison with (HL-LHC)

- model dependent fit shown for HL-LHC results
- results shown for one LHC experiment

➡ Factor ~10 improvement for most couplings

- FCC-ee measurements turn hadron collider Higgs measurements into absolute coupling measurements (synergy)
- rare decays favored by hadron collider searches (complementarity)

Testing new physics at multi-TeV scale

start probing quantum structure

Example from Composite Higgs Models (4HDM)

in %	HL-LHC	FCC-ee
g нz	2-4	0.21
G нw	2-5	0.43
Э нь	5-7	0.64
ਉ Hc		1.04
G Hg	3-5	1.18
g _H _τ	5-8	0.81
Ο Ημ	5	8.79
ਉ Ηγ	2-5	2.12
Гн	5-8%	1.55

arXiv:1307.7135 arXiv:1308.6176

Theoretical Precision

- Experimental precision must be accompanied by theoretical precision program
 - ideally we want: $\Delta_{th} \ll \Delta_{exp}$
 - current theoretical precision O(1%)

Higgs observable

- inputs like α_s and m_H will be measured well by FCC-ee
- good control over m_b essential, i.e. improvements for lattice QCD.
- significant work needed on Higgs production in e⁺e⁻ (tools are available)

Study of SM Higgs partial width and BR -Table of inputs - arXiv:1311.6721

m_{H}	125.7(4)	pole mass m_t	173.5(10)
pole mass m_c	1.67(7)	pole mass m_b	4.78(6)
pole mass M_Z	91.1535(21)	G_F	$1.1663787(6) \times$
pole mass m_{τ}	1.77682(16)	$\alpha_S(M_Z)$	0.1184(7)
$\alpha(M_Z)$	1/128.96(2)	$\Delta lpha_{had}^{(5)}$	0.0275(1)

Current impact from parametric uncertainty $(\alpha_s, m_c, and m_b)$ on Higgs couplings arXiv:1404.0319. Authors argue that significant progress (factor 7) is possible.

 $\delta_b = 0.7\%$, $\delta_c = 0.7\%$, $\delta_q = 0.6\%$

Electron Yukawa Couplings

s-channel Higgs production

- unique opportunity for measurement close to SM sensitivity
- highly challenging; $\sigma(ee \rightarrow H) = 1.6$ fb; $\sigma(e^+e^- \rightarrow H) = 50ab \text{ (nominal } \delta E/E)$
- various Higgs decay channels studied
- studied monochromatization scenarios
 - baseline: 6 MeV energy spread, L = 2 ab-1
 - optimized: 10 MeV energy spread, L = 7 ab-1
 - limit ~3.5 times SM in both cases

Higgs CP Studies

→ $H \rightarrow \tau \tau$ decay is promising channel to study CP violation

• tree level couplings to quarks and leptons

OP-even and CP-odd couplings induced at the same order

CP violation can be probed through τ polarization

- $\odot\,\tau$ decays clean enough that the spin information is not washed out by hadronization effects
- \odot pion emission preferred in the direction of the τ spin in rest frame
- exploring

$$\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$$

model using effective lagrangian

 $\mathcal{L}_{hff} \propto h \bar{f} (\cos \Delta + \mathrm{i} \gamma_5 \sin \Delta) f$

Detector Qualification

- Physics motivation for detector design choices
- Testing detector requirements for the high precision Higgs measurements
 - muon momentum resolution
 - jet resolution
 - photon separation for tau identification
 - b and c-tagging with vertex detector
 - **•** ...
- Ongoing efforts to analyze the impact of detector performance using a subset of Higgs studies

I	1	
I		
I		
I	~~~	
I		
I		
I		
I		
I		
l		
ľ	-	
	-	
	-	
	-	
	-	
	-	
		_
		-
	7	
	1	
	11	
	111	
	111	
	1111	
	1111	
	11111	
	11111	
	11/1/1	
	11/1/1	
	11/1/11	
	11/1/1/1	
	11/11/11	
	1111111	
	11111111	
	11111111	
	11/11/11/11	
	11/11/11/11	

Higgs CP use case for Detector Qualification

Checked impact of ECAL and HCAL resolution on Higgs CP study

Nominal detector performance ILC-like ECAL: $\sqrt{0.01^2 E^2 + 0.15^2 E}$ • varied ECAL and HCAL resolution by factor of 2 from nominal value HCAL: $\sqrt{0.015^2E^2 + 0.50^2E}$

- next: checking impact of photon separation

- Gen: 0.05 radians
- Nominal: 0.17 radians
- HCAL resolution
 - ✤ 0.5: 0.15 radians
 - ✤ 2.0: 0.19 radians
- ECAL resolution
 - ✤ 0.5: 0.15 radians
 - ✤ 2.0: 0.18 radians

BSM Higgs Studies

searches

Outline of CDR Section

1 – PHYSICS		3 – Hadron Collider Comprehensive			
<section-header><section-header></section-header></section-header>	2 Hadron Collider	Accelerator	Injectors	eh	Techr
		Infrastructure	Operation		Expe
	4 Lepton Collider	5 – Lepton Collider Con	nprehensive		
		Accelerator	Injectors		Techr
		Infrastructure	Operation		Expe
	6 High Energy LHC	7 – High Energy LHC Comprehensive			
		Accelerator	Injectors		Techr
		Infrastructure	Operation		Expe

Higgs Physics at FCC-ee

- Introduction
- Signal and Background Processes
- **Detector Requirements**
- **Recoil Mass Measurements**
- ZH Cross Section 1.1
- Higgs Boson Mass 4.2
- **Higgs Boson Branching Fraction Measurements**
- **Higgs Boson Coupling and Total Width**
- Theoretical Uncertainties
- **Higgs Boson CP Measurements**
- Exotic Higgs Boson Decays .9
 - 10 Summarv

Higgs Working Group

- Work structured around a series of workshops
 - In planning workshop end of 2017 to consolidate and summarize the results
- Follow-up in FCC-ee physics meeting or dedicated FCC-ee Higgs meetings
- Worker bees are typically undergraduate students. A fresh group of summer students lined up to boost the effort
- Working group would benefit from ~3 postdocs (or experienced students) to consulted the work fill in the missing pieces

Conclusion

➡Fantastic prospects to probe the Higgs sector with FCC-ee

- $\ensuremath{\bullet}$ unique measurements of g_{ZH} and total width
- precision measurements of Higgs boson properties (coupling, mass, CP)
- \odot precision Higgs program needs to be accompanied by precision program for $m_c,\,m_b,\,and\,\alpha_s$
- BSM Higgs physics through direct and indirect measurements
- Synergy and complementarity to hadron collider Higgs physics
 - ★ Dedicated talk on Higgs synergies by Christophe Grojean later in this session
- Investigating requirements on detector and machine
- Tentative outline for Higgs physics section in FCC CDR Book #5:

Additional Material

Dark Photon Searches via Higgs Production

Biswas, Gabrielli, Heikinheimo, Mele JHEP 1506 (2015) 102 + arxiv:1703.00402

Massless Dark Photon $\overline{\gamma}$ $e^+e^- \rightarrow H\bar{\gamma} \rightarrow b\bar{b}\bar{\gamma}$ $e^+e^- \rightarrow ZH \rightarrow (\mu^+\mu^-, q\bar{q})(\gamma\bar{\gamma})$

Large effects expected due to

- → Higgs non-decouplings
- → large U(1) couplings in dark sector
- unexplored signatures ! massless invisible system
- **5** σ sensitivity for BR(H $\rightarrow \gamma \gamma$) ~ 3x10⁻⁴
- 3 times better than LHC @ 300 fb⁻¹ Biswas et al. PRD 93 (2016) 093011

Exclusive Higgs Boson Decays

- First and second generation couplings accessible
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

$$\frac{\mathrm{BR}_{h\to\rho\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{b} \right]}{0.57 \bar{\kappa}_{b}^{2}}$$

- Also interesting to FCC-hh program
- → Alternative H→MV decays should be studied (V= γ , W, and Z)

