

John Ellis

Complementarity between FCC-ee and

The vision: explore 10 TeV scale directly (100 TeV pp) + indirectly (e⁺e⁻)

Cohabitation/Serial Monogamy

FCC-ee Physics & Experiments Coordination

The Objectives

- How do FCC-hh, FCC-ee and FCC-he complement each other? Cf, LEP and LHC
- What are the synergies between them?
 - And between them and other accelerators (LHC)?
- Requires inputs from specific FCC-xx analyses
- Broad subject: just starting
- Illustrate with specific physics examples
 - Higgs and precision electroweak
 - Supersymmetry

The Objectives

h ee he

	J			
Subject		ee	hh	he
Higgs Physics	precision studies higher dimension operators composite Higgs rare and exotic decays multiple Higgs production extra Higgs bosons			
Interface with Cosmology	Dark matter baryogenesis right-handed/(almost) sterile neutrinos			
Electroweak Sym. Breaking	WW ocuttoring supersymmetry outra dimensions composite models			
Flavour Changing	rare H,Z,W,top decays lepton flavor violation			
Extensions of the SM	extra vector-like fermions SU(2) _R models leptoquarks			
QCD	Perturbation theory, structure functions Modelling final states			
EW/SM precision issues	precision measts (m _z ,m _W ,m _t ,α,α _s (m _z),sin ² θ _W ,R _b higher-order EW corrections W,Z triple and quadruple couplings top (anomalous) couplings charm/bottom flavor studies			

TLEP (FCC-ee) study, arXiv:1308.6176 Possible FCC-ee Precision Measurements

Observable	Measurement	Current precision	FCC stat.	Possible syst	Challeng
m _z (MeV)	7 neak	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Γ _z (MeV		2495.2 ± 2.3	0.008	< 0.1	QED corr.
R _I	$\pm 4 \text{ GeV}$	20.767 ± 0.025	0.0001	< 0.001	Statistics
R _b	for $\alpha_{\rm EM}$.	0.21629 ± 0.00066	0.00003	< 0.00006	g → bb
N,	line chone	2.984 ± 0.008	0.00004	< 0.004	Lumi meast
α _s (m _z	me snape	0.1190 ± 0.0025	0.00001	0.0001	New Physics
۲۱ <mark>w (</mark> Me ۷)		80385 ± 15	0.3	< 0.5	QED Corr.
N,	threshold	2.92 ± 0.05 2.984 ± 0.008	0.001	< 0.001	?
α _s (m _w)	unesnoia	B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	CKM Matrix
n _{top} (MeV)	t tbar	173200 ± 900	10	10	CCD (~40 MeV
Γ_{top} (MeV)		?	12	?	α _s (m _Z)
λ_{top}	threshold	μ = 2.5 ± 1.05	13%	?	α <mark>₅(m</mark> z)

- Need to reduce theoretical uncertainties to match experimental errors
 High precision at F
 - Needed for BSM interpretations

High precision at FCC-ee Big statistics at FCC-hh

One way to look for BSM physics

Standard Model Effective Field Theory

- Higher-dimensional operators as relics of higherenergy physics, e.g., dimension 6: $\mathcal{L}_{eff} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$
- Operators constrained by $SU(2) \times U(1)$ symmetry:

$$\mathcal{L} \supset \frac{\bar{c}_{H}}{2v^{2}} \partial^{\mu} [\Phi^{\dagger}\Phi] \partial_{\mu} [\Phi^{\dagger}\Phi] + \frac{g'^{2} \bar{c}_{\gamma}}{m_{W}^{2}} \Phi^{\dagger}\Phi B_{\mu\nu} B^{\mu\nu} + \frac{g_{s}^{2} \bar{c}_{g}}{m_{W}^{2}} \Phi^{\dagger}\Phi G_{\mu\nu}^{a} G_{a}^{\mu\nu} + \frac{2ig \bar{c}_{HW}}{m_{W}^{2}} [D^{\mu}\Phi^{\dagger}T_{2k}D^{\nu}\Phi] W_{\mu\nu}^{k} + \frac{ig' \bar{c}_{HB}}{m_{W}^{2}} [D^{\mu}\Phi^{\dagger}D^{\nu}\Phi] B_{\mu\nu} + \frac{ig \bar{c}_{W}}{m_{W}^{2}} [\Phi^{\dagger}T_{2k}\overleftarrow{D}^{\mu}\Phi] D^{\nu} W_{\mu\nu}^{k} + \frac{ig' \bar{c}_{B}}{2m_{W}^{2}} [\Phi^{\dagger}\overleftarrow{D}^{\mu}\Phi] \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_{t}}{v^{2}} y_{t}\Phi^{\dagger}\Phi \ \Phi^{\dagger} \cdot \bar{Q}_{L}t_{R} + \frac{\bar{c}_{b}}{v^{2}} y_{b}\Phi^{\dagger}\Phi \ \Phi \cdot \bar{Q}_{L}b_{R} + \frac{\bar{c}_{\tau}}{v^{2}} y_{\tau} \ \Phi^{\dagger}\Phi \ \Phi \cdot \bar{L}_{L}\tau_{R}$$

• Constrain with precision EW, Higgs data, TGCs ...

r CC-ee Higgs & TGC Measurements

Higgs and TGCs

 Shadings:
 With/without theoretical EWPT uncertainties Shadings of green:
 – Effect of including TGCs at ILC

Should extend to include prospective FCC-hh measurements of TGCs, ...

Important to Control TH and SM Uncertainties

FCC hin ee he

Evil Twins of the Higgs?

Naturalness not hidden, just look in new places...

What lies beyond the Standard Model?

Supersymmetry

Stabilize electroweak vacuum

New motivations From LHC Run 1

- Successful prediction for Higgs mass
 Should be < 130 GeV in simple models
- Successful predictions for couplings

 Should be within few % of SM values
- Naturalness, GUTs, string, ..., dark matter

asiciCode Conaboration, arXiv.1010.10004, 1012.032

FCC-hh Reach in Squark-Gluino Plane

nh ee he

Exploring the **Stop Coannihilation Strip**

- Compatible with LHC measurement of m_h
- May extend to $m_{\chi} = m_{stop} \sim 6500 \text{ GeV}$

JE, Olive & Zheng: arXiv:1404.5571

Buchmueller, JE et al: arXiv:1505.04702

Precision FCC-ee Measurements

Precision Electroweak

Impact of Precision and Higgs Measurements

 Contributions of Higgs and electroweak precision observables to global χ² function along stop coannihilation strip

FCC-ee vs FCC-hh: possible test of supersymmetry at the loop level Buchmueller. JE et al: arXiv:1505.04702

Global Analysis, Combination & Complementarity

- Will depend upon inputs from both FCC-ee and FCC-hh (and FCC-he)
- Core business: probes of any new physics at the quantum level
 - E.g., Higgs, supersymmetry
 - Effort needed from all sides
 - Important to work on systematic, theoretical errors
 - Accuracy of possible FCC-hh measurements?
 - Explore further sensitivity to BSM > H, SUSY

Structure of FCC CDR

Work Plan Towards FCC CDR

- Continue ongoing studies & document
 Particularly hh and he, but also ee
- Need to prioritize topics?
 - Precision electroweak & TGCs
 - Higgs
 - Specific BSM scenarios
 - Supersymmetry? Composite models? Neutrinos?
- To be largely in place for FCC meeting in Jan. 18
- Can then compile & document complementarities & synergies

Back-ups

What H Physics can FCC-hh do?

• One thing is to have a large σ

900 FCC PDF4LHC15 800 P P -> H+X $\mu_f = \mu_f \in [m_b/4, m_b]$ 700 m_h=125 GeV 600 1.0 - NLO - NNLO - N3LO σ [pb] 500 400 300 200 100 Studies in progress 70 60 10 20 30 √S [GeV]

Mangano @ Hong Kong

• Another is to have small uncertainties

$\delta_{ m PDF}$	δ_{lpha_S}	$\delta_{ m scale}$	$\delta_{ ext{PDF-theo}}$	$\delta_{ m EW}$	$\delta_{ m tbc}$	$\delta_{\frac{1}{m_1}}$
$\pm 2.5\%$	$\pm 2.9\%$	$^{+0.8\%}_{-1.9\%}$	$\pm 2.5\%$	$\pm 1\%$	$\pm 0.8\%$	$\pm 1\%$

vleasurement of 3-H Coupling

• The story so far			Studies in progress		
ΗН → bЪγγ	Barr,Dolan,Englert,Lima, Spannowsky JHEP 1502 (2015) 016	Contino, Azatov, Panico, Son arXiv:1502.0053	9	He, Ren Yao arXiv:1506.03302	
FCC _{@100TeV} 3/ab	30~40%	30%		15%	
FCC _{@100TeV} 30/ab	10%	10%	(5%	
S/\sqrt{B}	8.4	15.2		16.5	
Details	$ \begin{array}{l} \checkmark \lambda_{HHH} \text{ modification only} \\ \checkmark c \rightarrow b \ \& \ j \rightarrow \gamma \text{ included} \\ \checkmark \text{Background systematics} \\ \circ b \overline{b} \gamma \gamma \text{ not matched} \\ \checkmark m_{\gamma\gamma} = 125 \pm 1 \text{ GeV} \end{array} $	✓ Full EFT approa ○ No $c \rightarrow b \& j \rightarrow d$ ✓ Marginalized ✓ $b\bar{b}\gamma\gamma$ matched ✓ $m_{\gamma\gamma} = 125 \pm 5$ ✓ Jet /Wheet veto	ch →γ 5 GeV	✓ λ_{HHH} modification only ✓ $c \rightarrow b \& j \rightarrow \gamma$ included ○ No marginalization ✓ $b\bar{b}\gamma\gamma$ matched ✓ $m_{\gamma\gamma} = 125 \pm 3$ GeV	

• More decay modes, improved selections, .

FCC-ee Sensitivity to 3h Coupling

• Loop corrections to $\sigma(H+Z)$:

A First Look at 4-H Coupling

HHH production and quartic coupling constraints

Papaefstathiou, Sakurai, arXiv: 1508.06524

How Heavy could Dark Matter be in pMSSM?

 Largest possible mass in pMSSM is along gluino coannihilation strip: m_{gluino} ~ m_{neutralino}

Reaches for Sparticles

Model with compressed spectrum: small gluinoneutralino mass difference

Large mass possible in gluino coannihilation scenario for dark matter

Indirect Stop Limits from Precision EW Data

Drozd, JE, Quevillon & You: arXiv:1504.02409

Possible FCC-ee Precision Measurements

Conservatively based on LEP experience so far – it is just a start. Much work ahead.

Observable	Measurement	Current precision	TLEP stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Γ _Z (MeV)	Lineshape	2495.2 ± 2.3	0.008	< 0.1	QED corr.
R _I	Peak	20.767 ± 0.025	0.0001	< 0.001	Statistics
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00006	g → bb
N,	Peak	2.984 ± 0.008	0.00004	< 0.004	Lumi meast
α (m ₇)	R _I	0.1190 ± 0.0025	0.00001	0.0001	New Physics
m _w (MeV	Threshold scan	80385 ± 15	0.3	< 0.5	QED Corr.
N _v	Radiative returns e⁺e⁻→γΖ, Ζ→νν, II	2.92 ± 0.05 2.984 ± 0.008	0.001	< 0.001	?
α.(m _w)	$B_{had} = (\Gamma_{had} / \Gamma_{tot})_{W}$	B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	CKM Matrix
m _{top} (MeV)	Threshold scan	173200 ± 900	10	10	QCD (~40 MeV)
Γ_{top} (MeV)	Threshold scan	?	12	?	α _s (m _z)
λ _{top}	Threshold scan	μ = 2.5 ± 1.05	13%	?	α _s (m _z)

Reaches for Sparticles

e he

what H Physics can FCC-hh do?

Big statistics!		N100	N100 / N8	N100 / N14
	gg→H	16 G	4.2 × 10 ⁴	110
VBF		1.6 G	5. × 0 ⁴	120
WH		320 M	2.3 × 10 ⁴	66
	ZH	220 M	2.8 × 10 ⁴	84
ttH		760 M	29 × 104	420
	gg→HH	28 M		280

- Sub-% measurement of H to $41/\gamma\gamma$?
- 1% measurement of H to $\mu\mu$
- 5% measurement of 3-H coupling?
- Sensitive to 4-H coupling?

Mangano @ Hong Kong

Possible Future Higgs Measurements

FCC-ee Higgs & TGC Measurements

• LHC constraints

JE & Tevong You, arXiv:1510.04561

• **FCC-ee** constraints: see $\Lambda \sim 10$ TeV?

Reach for the Stop

Discover 6.5 TeV stop @ 50, exclude 8 TeV @ 95%

Stop mass up to 6.5 TeV possible along coannihilation strip

Measuring CMSSM with FCC-ee

Where May Supersymmetry be Hiding?

