An example of synergy in BSM physics: Right-handed neutrinos

Oliver Fischer

University of Basel, Switzerland

FCC week 2017, May the 30th, 2017, Berlin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation for sterile neutrinos

Shaposhnikov et al.

- Neutrino oscillations: at least two massive light neutrinos.
- No renormalisable way in the SM therefore;
 - \Rightarrow evidence for new physics.
- Sterile neutrinos for type I seesaw mechanism.

Oliver Fischer

1 / 14

A D A D A D A

The "naïve" type I seesaw

• The simplified version: $(1 \nu_L, 1 \nu_R)$

* Mass matrix
$$\sim \begin{pmatrix} 0 & m \\ m & M \end{pmatrix}$$
, with $m = y_{\nu} v_{\rm EW} \ll M$.
* Light neutrino mass: $m_{\nu} = \frac{1}{2} \frac{v_{\rm EW}^2 |y_{\nu}|^2}{M_R}$.

• More realistic case: $(2 \nu_L, 2 \nu_R)$

$$egin{aligned} y_
u o egin{pmatrix} y_
u o egin{pmatrix} y_
u o egin{pmatrix} M_
u o egin{pmatrix} M_R & 0 \ 0 & M_R(1+arepsilon) \end{pmatrix} \ & \Rightarrow m_{
u_i} = rac{v_{
m EW}^2 y_
u^2}{M_R}(1+\delta_{i2}arepsilon) \end{aligned}$$

 \Rightarrow The m_{ν_i} fix a relation between y_{ν} and M_R .

Oliver Fischer

The effect of protective symmetries

- Specific structures of the Yukawa and mass matrices can be realised by symmetries (no fine tuning).
- A (2 ν_L , 2 ν_R) example:

$$egin{aligned} y_
u &
ightarrow egin{pmatrix} \mathcal{O}(y_
u) & 0 \ \mathcal{O}(y_
u) & 0 \ \end{pmatrix}, & M &
ightarrow egin{pmatrix} 0 & M_R \ M_R & arepsilon \ \end{pmatrix} \ &\Rightarrow m_{
u_i} = 0 + arepsilon rac{v_{
m EW}^2 \mathcal{O}(y_
u^2)}{M_R^2} \end{aligned}$$

• "Symmetry violating" parameter ε controls magnitude of m_{ν_i} . \Rightarrow Large y_{ν} and $M_R \sim v_{\rm EW}$ can be compatible with small m_{ν_i} .

Oliver Fischer

The Big Picture

4 / 14

(4) (1) (4) (2)

Symmetry Protected Seesaw Scenario

Benchmark model for FCC studies, defined in Antusch, OF; JHEP **1505** (2015) 053. Similar to e.g.: Mohapatra, Valle (1986); Shaposhnikov (2007); Gavela, Hambye, Hernandez (2009)

 Collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry, such that

$$\mathscr{L}_{N} = -\frac{1}{2}\overline{\mathcal{N}_{R}^{1}}\mathcal{M}(\mathcal{N}_{R}^{2})^{\mathsf{c}} - y_{\nu_{\alpha}}\overline{\mathcal{N}_{R}^{1}}\widetilde{\phi}^{\dagger}\mathcal{L}^{\alpha} + \mathrm{H.c.}$$

- Further "decoupled" sterile neutrinos may exist.
- Active-sterile mixing: $\theta_{\alpha} = y_{\nu_{\alpha}} \frac{v_{\text{EW}}}{\sqrt{2}M}, \ \theta^2 \equiv \sum_{\alpha} |\theta_{\alpha}|^2$
- The leptonic mixing matrix to leading order in θ_{α} :

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos

► Z pole search: limits from Z branching ratios .

Abreu et al. Z.Phys. C74 (1997) 57-71

- Higgs decays: Best constraints from $h \rightarrow \gamma \gamma$.
- Direct Search: $\delta \sigma_{\rm SM}^{WW} = 0.011_{stat} + 0.007_{syst}$

OPAL collaboration, Abbiendi et al. (2007)

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos

6 / 14

Systematic assessment of signatures at the FCCs

Antusch, Cazzato, OF; 1612.02728

An example of synergy in BSM physics: Right-handed neutrinos

Most promising search strategies for sterile neutrinos FCC-ee:

► Displaced vertices (Z-pole) S. Antusch, E. Cazzato, OF; JHEP 1612 (2016) 007

A. Blondel et al. [FCC-ee study Team], Nucl. Part. Phys. Proc. 273-275 1883

Electroweak precision measurements (mostly Z-pole)

S. Antusch, OF; JHEP 1410 (2014) 094

- Higgs boson production and decay modes
- FCC-hh:
 - Displaced vertices
 - Lepton-flavor violating di-leptons plus jets*
 - Lepton-number violating di-leptons

FCC-eh:

- Lepton-flavor violating lepton-trijet*
- Lepton-number violating antilepton-trijets
- * S. Antusch, E. Cazzato, OF; 1612.02728

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos

Sensitivities: summary

《曰》 《聞》 《臣》 《臣》

2

ep and pp at parton level

The combination of *ee* with *pp* and *ep* colliders provides complementary tests for the neutrino mass mechanism.

Examples for work on right-handed neutrinos at FCC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Z-pole run at the FCC-ee (1)

General small breaking terms can yield small neutrino masses.

Gavela, Hambye, Hernandez; 0906.1461

Very predictive scenario (2l,2r): $U_{\alpha i}^2/U_{\beta i}^2$ with $\alpha, \beta = e, \mu, \tau$ fixed by the light neutrino masses, mixings and the CP phases (δ, Φ).

Hernandez, Kekic, Lopez-Pavon, Racker, Salvado; 1606.06719

Caputo, Hernandez, Kekic, Lopez-Pavon, Salvado; 1611.05000

Fraction of the area of the regions (δ, Φ) where CP violating phases $\neq 0, \pi$ can be established at 5σ from Z-pole run $\epsilon_{\Box}, \epsilon_{\Box}, \epsilon_{$

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos

The Z-pole run at the FCC-ee (2)

Lowscale Leptogenesis

- Baryon asymmetry generated from lepton-number violation
- Low-scale mechanism is driven from oscillations between sterile and active neutrinos

Exotic Z boson decays:

- Lepton-flavor violating decays $Z \rightarrow e\mu, e\tau, \mu\tau$
 - Induced from sterile neutrinos at the loop level.

A. Abada, V. De Romeri, S. Monteil, J. Orloff and A. M. Teixeira; JHEP04(2015)051

An example of synergy in BSM physics: Right-handed neutrinos

Measuring the Higgs potential at the FCC-hh

"A new probe of low-scale seesaw models".

J. Baglio and C. Weiland; JHEP 1704, 038 (2017)

FCC-hh can measure the triple Higgs coupling with high precision

Sterile neutrions contribute at the loop level

Oliver Fischer

Related articles considering electron-proton colliders

"Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider,"

S. Mondal, S. K. Rai; Phys. Rev. D 93 (2016) no.1, 011702

イロン イボン イヨン イヨン 三日

- "Probing the Heavy Neutrinos of Inverse Seesaw Model at the LHeC,"
 S. Mondal, S. K. Rai; Phys. Rev. D 94 (2016) no.3, 033008
- "Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider,"

M. Lindner, F. S. Queiroz, W. Rodejohann, C. E. Yaguna; JHEP 1606 (2016) 140

Oliver Fischer

2.4

Synergy and Complementarity

FCC-ee:

- highest sensitivity for $M < m_W$; low mass regime.
 - \Rightarrow Test model predictions
- SM precision tests have high sensitivity; mass independent.
 - \Rightarrow Test heavy neutrinos up to $\sim 60~\text{TeV}$
 - \Rightarrow Not sensitivite to the number of neutrinos

FCC-hh and -eh:

- Direct test of lepton-flavor (and -number) violation.
 - \Rightarrow Number of heavy neutrino generations and their masses
- Indirect test via measurement of Higgs potential.
- Sensitive to high mass regime

13 / 14

Conclusions

- Right-handed neutrinos are well motivated BSM extensions.
- Symmetry protected seesaw scenarios allow for electroweak scale sterile neutrino masses and O(1) active-sterile mixings.
- Present constraints: active-sterile mixing $|\theta|^2 \le 10^{-3}$.
- ▶ Ballpark: FCC sensitivity for active-sterile mixing $O(10^{-5})$
- Great prospects for right-handed neutrino searches:
 - * FCC-ee: Electroweak precision observables.
 - * FCC-hh: Lepton-flavour violating dilepton-dijet.
 - * FCC-eh: Lepton-flavour violating lepton-trijet.
 - ★ All: Displaced vertex searches.
- Synergy: The combination of direct and indirect signatures at all FCCs will pin down the parameters and test model specific predictions.
- \Rightarrow Testing the origin of neutrino masses.

Oliver Fischer

14 / 14

イロト 不得下 イヨト イヨト 二日

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Backup I - EWPO

Experimental results and SM predictions for the EWPO, and the modification^{*}, to first order in the "non-unitarity" parameters $\varepsilon_{\alpha\alpha} = \theta_{\alpha}^* \theta_{\beta}$. (formulae for $M \gg m_Z$)

Prediction in MUV	SM Prediction	Experiment
$\left[R_\ell ight]_{ m SM} \left(1 - 0.15 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	20.744(11)	20.767(25)
$\left[R_b ight]_{ m SM}\left(1+0.03(arepsilon_{ee}+arepsilon_{\mu\mu}) ight)$	0.21577(4)	0.21629(66)
$\left[R_{c}\right]_{\mathrm{SM}}\left(1-0.06(arepsilon_{ee}+arepsilon_{\mu\mu}) ight)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM} (1 - 0.25(\varepsilon_{ee} + \varepsilon_{\mu\mu}) - 0.27\varepsilon_{\tau})/{\rm nb}$	41.470(15)	41.541(37)
$[R_{inv}]_{\text{SM}}(1+0.75(\varepsilon_{ee}+\varepsilon_{\mu\mu})+0.67\varepsilon_{\tau})$	5.9723(10)	5.942(16)
$[M_W]_{ m SM}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m GeV}$	80.359(11)	80.385(15)
$[\Gamma_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m MeV}$	83.966(12)	83.984(86)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{lep}})^2]_{\mathrm{SM}}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

* Minimal Unitarity Violation scheme: Antusch et al.; JHEP 0610 (2006) 084.

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos

14 / 14

Backup II - lepton universality

Modification due to sterile neutrinos (formulae for $M \gg m_Z$):

$$R_{lphaeta} = \sqrt{rac{(NN^{\dagger})_{lphalpha}}{(NN^{\dagger})_{etaeta}}} \simeq 1 + rac{1}{2} \left(arepsilon_{lphalpha} - arepsilon_{etaeta}
ight) \,.$$

	Process	Bound		Process	Bound
$R^\ell_{\mu e}$	$\frac{\Gamma(\tau \to \nu_\tau \mu \bar{\nu}_\mu)}{\Gamma(\tau \to \nu_\tau e \bar{\nu}_e)}$	1.0018(14)	$R^{\pi}_{\mu e}$	$\frac{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}{\Gamma(\pi \to e \bar{\nu}_{e})}$	1.0021(16)
$R^\ell_{ au\mu}$	$rac{\Gamma(au o u_ au e ar u_e)}{\Gamma(\mu o u_\mu e ar u_e)}$	1.0006(21)	$R^{\pi}_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_\tau \pi)}{\Gamma(\pi \to \mu \bar{\nu}_\mu)}$	0.9956(31)
$R^W_{e\mu}$	$rac{\Gamma(W ightarrow e ar{ u}_e)}{\Gamma(W ightarrow \mu ar{ u}_\mu)}$	1.0085(93)	$R^{K}_{ au\mu}$	$rac{\Gamma(au o K u_ au)}{\Gamma(K o \mu ar{ u}_\mu)}$	0.9852(72)
$R^W_{ au\mu}$	$\frac{\Gamma(W \to \tau \bar{\nu}_{\tau})}{\Gamma(W \to \mu \bar{\nu}_{e})}$	1.032(11)	$R_{ au e}^K$	$egin{array}{l} \Gamma(au o K u_ au) \ \overline{\Gamma(K o e ar{ u}_e)} \end{array}$	1.018(42)

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos 14 / 14

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Backup III - CKM unitarity constraint

Current world averages: $V_{ud} = 0.97427(15)$, $V_{ub} = 0.00351(15)$

$$\begin{split} |V_{ij}^{th}|^2 &= |V_{ij}^{exp}|^2 (1 + f^{\text{process}}(\varepsilon_{\alpha\alpha})) ,\\ |V_{ud}^{th}|^2 &= |V_{ud}^{exp,\beta}|^2 (NN^{\dagger})_{\mu\mu} .\\ \text{For the kaon decay processes we have:} \\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to e}|^2 (NN^{\dagger})_{\mu\mu} ,\\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{ee} . \end{split}$$

Process	$V_{us}f_+(0)$	
$K_L ightarrow \pi e \nu$	0.2163(6)	
$K_L \rightarrow \pi \mu \nu$	0.2166(6)	
$K_S ightarrow \pi e u$	0.2155(13)	
$K^{\pm} ightarrow \pi e u$	0.2160(11)	
$K^{\pm} ightarrow \pi \mu u$	0.2158(14)	
Average	0.2163(5)	

Processes involving tau leptons:

Process	$f^{ ext{process}}(arepsilon)$	$ V_{us} $
$rac{B(au ightarrow K u)}{B(au ightarrow \pi u)}$	$arepsilon_{\mu\mu}$	0.2262(13)
$ au ightarrow K \nu$	$\varepsilon_{ee} + \varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}$	0.2214(22)
$\tau \to \ell, \tau \to s$	$0.2arepsilon_{ee} - 0.9arepsilon_{\mu\mu} - 0.2arepsilon_{ au au}$	0.2173(22)

Oliver Fischer

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Backup IV - lepton flavour violation

Present experimental limits at 90% C.L.:

Process	MUV Prediction	Bound	Constraint on $ \varepsilon_{\alpha\beta} $
$\mu ightarrow e\gamma$	$2.4 imes10^{-3}arepsilon_{\mu e}arepsilon^2$	5.7×10^{-13}	$arepsilon_{\mu e} < 1.5 imes 10^{-5}$
$ au ightarrow { m e} \gamma$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	1.5×10^{-8}	$arepsilon_{ au e} < 5.9 imes 10^{-3}$
$\tau \to \mu \gamma$	$4.1 imes 10^{-4}arepsilon_{ au\mu}arepsilon^2$	1.8×10^{-8}	$arepsilon_{ au\mu} < 6.6 imes 10^{-3}$

Estimated sensitivities of planned experiments at 90% C.L.:

Process	MUV Prediction	Bound	Sensitivity
$Br_{ au e}$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	10 ⁻⁹	$arepsilon_{ au e} \geq 1.5 imes 10^{-3}$
$Br_{ au\mu}$	$4.1 imes10^{-4}arepsilon_{ au\mu}arepsilon^2$	10^{-9}	$arepsilon_{ au\mu} \geq 1.6 imes 10^{-3}$
$Br_{\mu eee}$	$1.8 imes10^{-5}ertarepsilon_{\mu e}ert^2$	10^{-16}	$arepsilon_{\mu e} \geq 2.4 imes 10^{-6}$
$R_{\mu e}^{Ti}$	$1.5 imes 10^{-5}ertarepsilon_{\mu e}ert^2$	$2 imes 10^{-18}$	$arepsilon_{\mu e} \geq 3.6 imes 10^{-7}$

 $\Rightarrow R_{\mu e}^{Ti}$ yields a sensitivity to m_{ν_R} up to 0.3 PeV.

Oliver Fischer

An example of synergy in BSM physics: Right-handed neutrinos

Backup V - state of the art analysis, pp

 \Rightarrow 5% signal efficiency remove all 10⁸ background events.