

European XFEL Status

Hans Weise & Winni Decking, DESY

Ciemat CIIS

HELMHOLTZ

On behalf of the European XFEL Accelerator Consortium

work supported by the respective funding agencies of the contributing institutes; for details please see http://www.xfel.eu

XFEL First Lasing.

ACCELERATORS | PHOTON SCIENCE | PARTICLE PHYSICS

Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association

f 🖥 🖸 🔊 🕾 🚍 💳

DESY HOME | RESEARCH | NEWS | ABOUT DESY | CAREER | CONTACT

INFOS & SERVICES

- » PRESS
- » WORK AND PRIVATE LIFE
- » OFFERS FOR PUPILS
- » SERVICES FOR INDUSTRY
- » DESY USER

» ACCELERATORS

» PHOTON SCIENCE

» PARTICLE PHYSICS

Light of the future »

DESY is the main shareholder of the next generation X-ray laser

17/05/04 · Press-Release

Biggest X-ray laser in the world generates its first laser light

In the metropolitan region of Hamburg, the European XFEL, the biggest X-ray laser in the world, has reached the last major milestone before the official opening in September. The 3.4 km long facility,...

1 2 3 4 5

The super X-ray laser » More about the European XFEL in DESY's research magazine!

XFEL One Kilometer of Cold Linac

XFEL With almost 800 Superconducting Cavities

European XFEL

The European XFEL

EL Built by Research Institutes from 12 European Nations

Some specifications

- Photon energy 0.3 24 keV
- Pulse duration ~ 10 100 fs
- Pulse energy few mJ
- Superconducting linac 17.5 GeV
- 10 Hz (27 000 b/s)
- 5 beam lines / 10 instruments
 - Start version with 3 beam lines and 6 instruments
- Several extensions possible:
 - More undulators
 - More instruments
 -
 - Variable polarization
 - Self-Seeding
 - CW operation

XFEL European XFEL Layout

Schleswig-Holstein Hamburg

Undulator/Photon Tunnels

Osdorfer Born

Experiment Hall in Schenefeld

Schenefeld

Injector at DESY campus

Linear Accelerator 1.9 km - 17.5 GeV

FCC Week 2017, Berlin Hans Weise, DESY

Bahrenfeld

DE

European XFEL Status & Commissioning Accelerator Complex With Challenging Parameter Set				
electron beam energy	8/12.5/14/17.5 GeV			
macro pulse repetition rate	10 Hz			
RF pulse length (flat top)	600 μs			
# of bunches/second	27,000			
bunch charge	0.02 – 1 nC			
electron bunch length after compression (FWHM)	2 – 180 fs			
normalized slice emittance*	0.4 - 1.0 mm mrad			
beam power	500 kW			
simultaneously operated SASE undulators	3			
$-40 -20 0 20 40 0 * \text{ normalized emittance: } \mathcal{E}_n =)$ $-40 -20 0 500 * \text{ normalized emittance: } \mathcal{E}_n =)$ $-40 1000 1500 2000$	$\gamma \varepsilon = \gamma \sqrt{\langle x^2 \rangle \langle p^2 \rangle + \langle x p_x \rangle^2}$			
Collimation Undulators Beam distribution	2 500 3 000 Beam dumps			

harmonic system

bunch compressor

beam diagnostics

More about experiments: http://www.xfel.eu

XFEL Project History

2000: First lasing at 109 nm at the Tesla Test Facility (TTF), now FLASH

- 2001: TESLA Linear Collider TDR with XFEL appendix
- 2002: TESLA TDR supplement with stand-alone XFEL
- 2006: European XFEL TDR
- 2009: Foundation of the European XFEL GmbH

Start of underground construction

2010: Formation of the Accelerator Consortium

16 accelerator institutes under the coordination of DESY

2012: End of tunnel construction

Start of underground installation

2016: Finish of accelerator installation

Start of commissioning

XFEI

- **09/17** First user experiments (total 800 hours)
- 2018 Continue facility commissioning + 2000 user hours2019 Routine operation with 6 experiments + 4000 user hours

- Photoinjector conditioned and characterized at PITZ, DESY-Zeuthen
- Injector cool-down 12 / 2015
- First Beam on Dec 18th 2015 commissioning till Q2/2016
- Full bunch train length (27,000 bunches/s) reached for 20pC 1000pC bunch charges
- Photocathode laser with excellent up-time (Yb:YAG laser from Max-Born Institute Berlin; 257 nm ≤ 4 µJ; 3 ps)
- 3.9 GHz system operational from day 2
- Laser heater commissioned

XFEL View along L3 accelerator section

XFEL Overview of XFEL Cryogenic Equipment

- Cryo plant with cold compressors and extended distribution system
- Cooling capacity:

2K :>1.9 kW

- 5/8K : 4 kW
- 40/80K : 24 kW

Linac is one 1.5 km long cryo-string

Hans Weise, DESY

XFEL Cryogenics is very challenging

Complexity of cryogenic system asked for sufficient commissioning time; experts had to establish / optimize operation and to gain experience with new machines, especially the used cold compressors.

How to deal with...

- 671 control valves
- >3,800 sensors (temperature, pressure, flow, level)
- 433 regulation loops
- >22,000 records and >220,000 properties
- and last but not least ... >300 tons of material to be cooled down
- Required 2K pressure stability of 2% peak from LLRF requirements (cavity detuning)
- Tedious adjustment of regulation loops
- Inner-system heaters to counteract dynamic processes

XFEL We cooled down all 96 accelerator modules

The last two stations (CS9) require still longer tunnel access.

XFEL LLRF Commissioning includes...

Commissioning milestones

- Initial checks (LLRF system ready for commissioning)
- Cold coupler conditioning (optional)
- Cavity Forward and Reflected RF signal integrity (cabling issues? signal saturation?)
- Frequency tuning (from parking position)
- Cavity Probe RF signal integrity (cabling issues? signal saturation?)
- Coupler tuning (target QL)
- Power-based gradient calibration (coarse)
- Cavity phasing (using waveguide phase shifters)
- Closed-loop operation (feedback, learning feedforward)
- <u>Beam-based</u> gradient calibration (fine)

Reached goals by now

- Handed over to operations and controlled via FSM
- Inner loop RF stability <0.01 deg, < 0.01%</p>
- Preliminary measurements of beam energy jitter ≈ 10⁻⁴

Average accelerating gradient after pre-installation module test and waveguide tailoring

26 MV/m, (design 23.5 MV/m)

Some additional gradient reduction due to tunnel waveguide distribution

Excess energy reach will enhance operation reliability

- After initial commissioning design gradient almost reached
- Operation of RF stations "off beam" allows final commissioning of single stations parallel to XFEL lasing operation
- Quite some RF cavities needed short multipactor processing around 16 to 20 MV/m.
- So far 4 couplers were disconnected due to temperature rise at warm window; RF conditioning was not easily possible.

Warm Beam Line Sections Bunch Compressor Sections – Challenging Installation

FCC Week 2017, Berlin Hans Weise, DESY

European XFEL Status & Commissioning Transverse Deflection System in Bunch Compressor BC2

The BC2 TDS system is one important system to be used to verify short bunch lengths during linac setup.

HELMHOLTZ

27

European

XFEI

European XFEL Status & Commissioning **Both Bunch Compressors BC1 / BC2 include** European **Commissioning Beam Dumps**

FCC Week 2017, Berlin Hans Weise, DESY

33

XFEL Linear Accelerator

30

XFEL Post Linac Beam Lines upstream of XS1

200 m transport line (eq. to 4 + 12 modules)
200 m collimation

XTL	1.520m	1.530m	1.540m	1.550m	1.560m	1.570m	1.580m	1.590m	1.600m	1.610m	1.620m
	· ·	•				-	D		'e'	•	0
		ſ	ſ								
DAC	143								144		
do											
1.620m	1.630m 1.640m	1.650m	1.660m	1.670m	1.680m	1.690m	1.700m	1.710m	1.720m	1.730m	1.7 4 0m
_	<pre><< Cabling >>></pre>										
	145		146		147				148		
1.7 - 0m	1.750m 1.760m	1.770m	1.780m	1.790m	1.800m	1.810m	1.820m	1.830m	1.840m	1.850m	1.8 1 0m
					1 1 1	I I I I I 🖂 I		1 <u> </u>			1.1.1
		₽-4- 8 0 4 <mark>, 8</mark> 04 4			Container for			= -	■□ =l ₁ = I O Bo		
					condensed water			<			
	149			150				151			
	•										
1.8 1 0m	1.870m 1.880m	1.890m	1.900m	1.910m	1.920m	1.930m	1.940m	1.950m	1.960m	1.970m	1.910m
										1.1	
152	153	154 1	55 156	157 158	159	160		161 162 163	164		
1.9 1 0m	1.990m 2.000m	2.010m	2.020m	2.030m	2.040m	2.050m	2.060m	2.070m	2.080m	2.090m	2.100m
			LI LLI	bodood						1.1.1	
					0 -	d		-			
		• •			• 1 • ••• •						1
											Well
	166 167		168			169		170			wan
2.100m	2.110m XS1 2.120m	2.130m									
					-	200 m	hoom	diatri	hution		
200 m beam distribution											
			Stranger Lat								
					100 m XS1 dump line						
	100 m XS1 dump line										
		-14		and the second				_			

European XFEL Status & Commissioning Transfer Lines at the End of the Main Linac XFEL Tunnel (XTL)

All beam lines are suspended from the ceiling Engineering of 'hanging' system needed some effort but result is very satisfying

FCC Week 2017, Berlin Hans Weise, DESY

European XFEL

Warm Beam Line Sections Transport Line to XS1 Beam Dump

- Three 300 kW main beam dumps
- Special vehicles to exchange activated dumps

XFEL Installation on Top of XS1 Dump Cave

XS1 installation includes transport towards XTDs

FCC Week 2017, Berlin Hans Weise, DESY

FCC Week 2017, Berlin Hans Weise, DESY

European XFEL Status & Commissioning

courtesy of XFEL.EU

35

European

SASE Undulator Sections with special air conditioning hutch

courtesy of XFEL.EU

XFEL Installation of Photon Beamlines

Differential pump + XGM in XTD9

courtesy of XFEL.EU

XFEL Photon Beam Diagnostics Status SASE1 – XTD2

courtesy of XFEL.EU

XFEL Photon Beam Diagnostics Status SASE1 – XTD9

courtesy of XFEL.EU

XFEL XHEXP – SASE1 science instruments

XFEL SASE1 - Femtosecond X-ray Experiment (FXE)

XFEL Beamline Commissioning Progress

FCC Week 2017, Berlin Hans Weise, DESY

41

European XFEL Status & CommissioningEuropeanFirst signal from FEL radiationXFEL02.05.17 - 03.05.17

Iow energy 6.4 GeV working point for beam based alignment
 no undulator beam based alignment yet, no laser heater

European XFEL

Systematic approach towards short wavelengths

European XFEI ASSOCIATIO

- After first lasing a systematic approach (BBA and commissioning of undulator ctrl) was chosen.
- Photon beam diagnostics was commissioned. Well prepared for lasing at short wavelength...

Hans Weise, DESY

XFEL Lasing at 2 Angstroem

FCC Week 2017, Berlin Hans Weise, DESY

European XFEL

Guest Scientists during commissioning

SL

CANDLE

ACCELERATOR LABORATORY neral Assembly of the European XFEL Accelerator Consortium 04.05.2017

THANK YOU TO ALL CONTRIBUTORS TO THE

G

