

Dispersion Suppressor Protection

Alexander M. Krainer

CERN

May 31st, 2017

Energy-Frontier

Acknowledgments to: I. Besana, R. Bruce, F. Cerutti, M. Fiascaris, A. Langner, A. Lechner, J. Molson, H. Rafique, D. Schulte

Proposal at FCC-Week 2016: Dispersion Suppressor collimators

- Efficiency of collimation system
- Impact of showers generated in the DS collimators

- Energy collimation has been included
- Beta function and Dispersion in the DS region have been optimized to improve efficiency of collimators.

Lossmaps with Merlin

Lossmaps with Merlin, DS included

Lossmaps with Merlin, DS included

Lossmaps with Merlin, DS included

- Input generation
- Geometry description
- Scoring

Visualization done with SimpleGeo (C. Theis, CERN)

- Input distribution is generated from Merlin tracking
 - Every turn the whole bunch is recorded before the collimator.
 - Particles which hit the collimator are selected.
 - This distribution is loaded into FLUKA and particles are randomly selected from it.
- Energy deposition is scored in a meshgrid of bins.
 - Scoring in the coils with 0.5 cm radial, 2° angular and 5 10 cm longitudinal binning.

Alexander M. Krainer (CERN)

Coil material: 50% Nb₃Sn, 50% Cu

Energy Deposition - Quadrupole

Alexander M. Krainer (CERN)

 Merlin and Sixtrack with FLUKA coupling show good agreement in the DS region (difference O(5 - 10 %)).

(J. Molson, "A Comparison of Interaction Physics for Proton Collimation Systems in Current Simulation Tools", IPAC17, ISBN 978-3-95450-182-3)

 Merlin and Sixtrack with FLUKA coupling show good agreement in the DS region (difference O(5 - 10 %)).

(J. Molson, "A Comparison of Interaction Physics for Proton Collimation Systems in Current Simulation Tools", IPAC17, ISBN 978-3-95450-182-3)

• Comparisons of simulations and measurements at the LHC showed a factor 2-3 discrepancy.

(R. Bruce et. al. Phys. Rev. ST Accel. Beams 17, 081004 (2014))

 Merlin and Sixtrack with FLUKA coupling show good agreement in the DS region (difference O(5 - 10 %)).

(J. Molson, "A Comparison of Interaction Physics for Proton Collimation Systems in Current Simulation Tools", IPAC17, ISBN 978-3-95450-182-3)

• Comparisons of simulations and measurements at the LHC showed a factor 2-3 discrepancy.

(R. Bruce et. al. Phys. Rev. ST Accel. Beams 17, 081004 (2014))

• No imperfections or magnet errors have been taken into account.

- The critical problem of cold losses in the Dispersion Suppressors has been addressed.
 - Energy deposition studies have been carried out for the most critical case in cell 8 after the Betatron cleaning insertion.
- Inclusion of energy collimation and optimizations in optics gave a factor \sim 2-3 reduction of cold losses.
- Placement of collimators and masks in cell 8 and cell 10 reduces the direct cold losses below the tentative goal of $3\cdot 10^{-7}$
- Additional elements are needed to protect the magnets from the particle showers
- With additional 1 meter collimators an important safety margin could be obtained and also gives possibilities for future upgrades.
- The same protection system proves to be effective to protect the Dispersion Suppressors around the experiments from continuous collision debris losses.

- Optimization of DS collimator gaps around the ring
 - Especially concerning changes of the energy collimation hierarchy
- Stress and heat-transport studies for the DS collimators
- Verification with energy deposition simulations that cell 10 is less problematic.
- Tracking studies for injection, ramp and squeeze.
 - DS collimator gaps for the respective operation modes.
 - Energy deposition studies, if impact parameter differ significantly from top energy case.
- Further studies to validate if the current DS collimation system is sufficient for lon operation as well.

Energy Deposition around IP

Energy deposition in the Dispersion Suppressors after IPA from collision debris.

Maximum Energy deposition in the Quadrupole coils (MQDA.8RA)

