Update of the SR studies for the FCCee Interaction Region

M. Sullivan
for the FCCee MDI team
FCC week May 29 – Jun 2 2017
Outline

• Introduction and MDI machine parameters
• Current beam pipe design
 – Features
• SR background calculations
 – Method
 – Results
 • Top
 • Higgs, WW and Z
• Secondary sources
• Summary and conclusions
<table>
<thead>
<tr>
<th></th>
<th>Z</th>
<th>WW</th>
<th>Higgs</th>
<th>tt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV)</td>
<td>45.6</td>
<td>80</td>
<td>120</td>
<td>175</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>1450 (1400)</td>
<td>152 (147)</td>
<td>30 (29)</td>
<td>6.6 (6.4)</td>
</tr>
<tr>
<td>#bunches</td>
<td>30180 (71000)</td>
<td>5260 (7500)</td>
<td>780 (740)</td>
<td>81 (61)</td>
</tr>
<tr>
<td>Particles/bunch (10^{10})</td>
<td>10 (4)</td>
<td>6 (4)</td>
<td>8</td>
<td>17 (21)</td>
</tr>
<tr>
<td>Emittance Hor. (nm)</td>
<td>0.28</td>
<td>0.26</td>
<td>0.61</td>
<td>1.26</td>
</tr>
<tr>
<td>Emittance Vert. (pm)</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
<td>2.52</td>
</tr>
<tr>
<td>Beta* X (m)</td>
<td>0.15</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Beta* Y (mm)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The first upstream soft bend magnet
has 100 keV critical energy at the Top

Several numbers have changed

(Michael Benedikt's presentation on Monday)
Interaction Region Beam Pipe
Interaction Region Beam Pipe

Central beam pipe +/-12.5 cm in Z. r = 15 mm

Central detector SA +/-150 mrad

LumiCal 50-100 mrad from exiting axis
Features

- Central beam pipe has 3 cm dia.
- Entering and exiting beam pipe through Q1 (3cm dia.)
- Be from about +/-80 cm
- Pipe size increases to 4cm dia. in Q2
- Size outside Q2 is currently 6 cm dia.
- Mask tips +/-12 mm and +/- 18 mm (show locations)
 - Allows for cold bore magnets (shields quad beam pipes)
 - Current IR design is for warm bores
 - Alternate plan instead of mask tips is to put a saw-tooth pattern on the water-cooled warm beam pipe – but we still need a tip at about 2m
 - suggested by R. Kersevan and also used in superKEKB
Brief summary of the method used for calculating the SR background rate

• The transverse size of the beam is divided into a grid (~20 x 60 sigmas) x (4x4) of weighted macro-particles
• Each macro-particle is traced through the optics and for each optical slice (4 to 8 slices per magnet) an arc is formed from the incoming and outgoing trajectories
• The magnetic field strength is calculated for the trajectory and a SR bend critical energy is calculated
• Then a geometric calculation is made for each beam pipe aperture downstream as to how much of the given produced SR fan intercepts each aperture
• A weighted histogram of critical energies for each aperture is kept and this is used to calculate the final photon energy distribution, photon number and power for each aperture
• The energy distribution is used to generate the incident photons onto a mask tip where the photons are traced through the mask material and a tally is kept of the photons which either travel through the mask or that reflect back out of the mask
The energy spectrum of the SR from the final focus magnets is much higher than the spectrum from the last bend magnet.
The IR design prevents FF quad radiation from striking nearby beam pipe elements.

The SR backgrounds then come only from the last soft bend radiation striking the mask tips.
Top Incident photon energy spectrum

Total = 2×10^8
(unnormalized)

Photon energy spectrum incident on the mask tip
Top scattered photon energy spectrum

K shell photo-emission

Total = 6.7x10^5
(unnormalized)
Higgs scattered photon spectrum

Total = 8.7×10^5
(unnormalized)

K shell photo-emission

Note change of scale
WW photon energy spectrum

Rayleigh scattering

Total = 7.8×10^5
(unnormalized)

Note change of scale
Z scattered photon energy spectrum

Essentially no scattered photons above 10 keV

Total = 7.4×10^4
(unnormalized)

Note change of scale
Scatter rate normalization table

<table>
<thead>
<tr>
<th>Beam energy (GeV)</th>
<th>Soft bend critical energy (keV)</th>
<th>Incident photon rate/xing (>1 keV)</th>
<th>Generated photons</th>
<th>Ratio Inc/Gen</th>
<th>Generated scattered photons</th>
<th>Actual tip scatter rate/xing</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>100</td>
<td>1.57×10^9</td>
<td>2×10^8</td>
<td>7.95</td>
<td>670120</td>
<td>5.3×10^6</td>
</tr>
<tr>
<td>125</td>
<td>35.0</td>
<td>1.87×10^8</td>
<td>2×10^9</td>
<td>0.094</td>
<td>868218</td>
<td>8.1×10^4</td>
</tr>
<tr>
<td>80</td>
<td>9.56</td>
<td>2.79×10^7</td>
<td>2×10^{10}</td>
<td>1.4×10^{-3}</td>
<td>799455</td>
<td>1119</td>
</tr>
<tr>
<td>45.6</td>
<td>1.77</td>
<td>2.26×10^7</td>
<td>5×10^{10}</td>
<td>4.5×10^{-4}</td>
<td>73685</td>
<td>33.3</td>
</tr>
</tbody>
</table>
Detector shielding

- In order to get final background calculations for the detector we need a full simulation.
- The photons scattered from the mask tips can then be propagated through the beam pipe and into the sensitive subsystems of the detector.
- A GEANT4 simulation of a generic detector is being used to study the background rate in various tracking detectors.
 - A. Kolano has produced some preliminary results using a GEANT4 model of a generic detector that look very good (next slide).
Table again with preliminary detector hits

<table>
<thead>
<tr>
<th>Beam energy (GeV)</th>
<th>Soft bend critical energy (keV)</th>
<th>Incident photon rate/xing (>1 keV)</th>
<th>Generated photons</th>
<th>Ratio Inc/Gen</th>
<th>Generated scattered photons</th>
<th>Actual scatter rate/xing</th>
<th>Hits in the detector rate/xing</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>100</td>
<td>1.57×10⁹</td>
<td>2×10⁸</td>
<td>7.95</td>
<td>670120</td>
<td>5.3×10⁶</td>
<td>4.5×10⁴*</td>
</tr>
<tr>
<td>125</td>
<td>35.0</td>
<td>1.87×10⁸</td>
<td>2×10⁹</td>
<td>0.094</td>
<td>868218</td>
<td>8.1×10⁴</td>
<td>33</td>
</tr>
<tr>
<td>80</td>
<td>9.56</td>
<td>2.79×10⁷</td>
<td>2×10¹⁰</td>
<td>1.4×10⁻³</td>
<td>799455</td>
<td>1119</td>
<td>0†</td>
</tr>
<tr>
<td>45.6</td>
<td>1.77</td>
<td>2.26×10⁷</td>
<td>5×10¹⁰</td>
<td>4.5×10⁻⁴</td>
<td>73685</td>
<td>33.3</td>
<td>0‡</td>
</tr>
</tbody>
</table>

* No shielding. With some shielding ~600
† Over 1400 xings
‡ Over 45000 xings

From A. Kolano
Suggested Shielding

- 2 cm thick Ta
- 1 cm thick HOM Abs
- Central beam pipe +/-12.5 cm in Z, r = 15 mm
- Central detector SA +/-150 mrad
- LumiCal 50-100 mrad from exiting beam axes
Initial Summary

• The primary SR background source is the radiation from the last soft bend magnet

• This radiation appears under control and detector background rates look manageable at all beam energies

• Remember the numbers in the table are for a single beam and a single mask tip

• Now we need to look at other SR sources
Other local scatter points

• **Backscatter from upstream mask tip**
 – The above calculations are for forward scattering from the upstream mask tip
 – Need to add backscattering from the upstream mask tip
 • Not much background increase expected from this

• **Backscatter from downstream mask tip**
 – Comparable to calculated value from upstream mask

• **Forward scatter from downstream tip**
 • Again do not expect much additional background from this source
Local primary SR scatter points

- 2 cm thick Ta 1 cm thick HOM Abs
- Central beam pipe +/-12.5 cm in Z. r = 15 mm
- Central detector SA +/-150 mrad
- LumiCal 50-100 mrad from exiting beam axes
- NEG pump

The pumping and shielding designs must be combined
Additional sources (2)

• Present estimate from all local sources
 – X^2 for both beams
 – X^2 for backscatter from the downstream mask tip
 – So about 4 times the numbers in the table

• Further upstream sources
 – Scattering from the SR hitting the beam pipe between the FF and the last soft bend magnet
 – With a 3 cm radius beam pipe from 8-90 m we do not see any background increase even with perfect reflection
 • Should be able to roughen the inner beam pipe wall enough so that this is not an issue
Upstream beam pipe

Fans miss the IP Be chamber

160 m upstream of IP
Downstream bend

- Distance from IP is 29 m (38 m long)
- Bend strength is 328 Gauss
 - Critical energy is higher (668 keV)
 - Luminosity window?
- Radiation from the Final Focus magnets
 - Final Focus Quad radiation is about 2 kW
 - Quad radiation has high critical energies (~few MeV)
 - Possible source of neutrons in the detector?
Photon energy spectrum from the first downstream bend

Critical energy is 668 keV
4.4% of all photons are > 1 MeV
10.55 kW total power

Spread over many meters
Quadrupole radiation from Final Focus

Remember that these two high-energy gamma distributions only occur during Top running.

1x10^6 in plot
Normalized value is:
1.1x10^{10} per bunch > 1 MeV
(4.4 \%) (1.9 kW)
Possible detector interests

• Zero degree Luminosity detector?
 – At the Z, W and Higgs – perhaps OK?
 – At the top beam energy SR background from FF magnets may be too much

• Smaller radius beam pipe?
 – At the Z and W perhaps possible
 • SR photon energies are very low
 • Requires a careful engineering study
 • Physics driver needed
Summary

• A great deal of progress has been made
• The primary SR sources are under control
 – Even at the Top
• Closer inspection of secondary sources underway
 – At first glance they look OK
• Other issues (i.e. injection, off-axis beam...) need to be checked
• Neutron production from SR photon high-energy tails
• Beam energy spread at the Top
Conclusion

• Always more to do but so far so good...

• Many thanks to everyone in the MDI group for contributing to discussions and helping to improve the IR design
End view at +/-1 m

LumiCal

HOM absorbers
The spectrum is noticeably steeper than the top energy plot and is plotted out to only 0.5 MeV.
Energy spectrum of Top beam energy scattered photons through 2 cm Ta

16136 in plot from 1 million incident (1.6%)