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Beam/Cavity Interaction

loops

RF feedback

dynamics

Longitudinal

Generator

C R L

Beam

~IG

~VC

~IB

I RLC model of the accelerating cavity
with two input currents: generator
and beam;

I Cavity voltage ~VC is defined by the
sum current;

I Low loading (~IB �~IG) — cavity
voltage is mostly defined by the
generator current;

I High loading — cavity voltage is
strongly modulated by beam current;

I Like to think of the interaction as a
“feedback loop” — beam current
source is affected by cavity voltage,
while cavity voltage depends on the
beam current.
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Why Worry about Beam Loading

I Two main effects of heavy beam loading:
I Synchronous phase transients;
I Longitudinal coupled-bunch instabilities driven by the RF cavity

fundamental impedance
I Transient effects depend on

I Total beam loading;
I Fill pattern.

I Fill patterns can be designed to mitigate transient effects;
I But longitudinal instabilities due to the fundamental impedance remain

an issue even with completely uniform fills;
I Reducing beam loading in the RF system design helps both issues.
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Phasor Diagram

~IL

~IB

~Itot

φB

φZ
~IG

~Vc

φL

~Itot = ~IG + ~IB

I Phasors at RF frequency, cavity
voltage on X axis;

I Synchronous phase φB is determined
by RF voltage, energy loss per turn;

I For minimum generator power keep
loading angle φL = 0;

I Cavity is detuned to maintain proper
phase angle φZ between the total
current and the cavity voltage;

I PEP-II example: IB = 6 A, IG = 1.7 A;
I To compensate fill pattern

modulation, when IB goes to 0 in the
gap, IG would need to match IT !
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The Model
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I Small-signal model developed by Flemming Pedersen;
I Model extended to include low-frequency coupled-bunch modes;
I Using reduced version that assumes no amplitude or phase modulation

from the RF system.
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Synchrotron Frequency and Bunch Length
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∑ I Start from computing large-signal
operating point (cavity detuning, RF
power);

I At that operating point, set up the
small-signal model;

I Compute aV and pV at 130680 points
spaced by TRF;

I For each bunch calculate
ωk

s =
√
−αeωRF

ET0
|Vk | sinφk

σk
z = αc

ωk
s
σE
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Model Verification
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 = 15.9723 MV; I
0
 = 1.4332 A; 66by2 fill

I The model has been developed for ALS
and PEP-II;

I PEP-II HER measurement and model
output;

I Reasonable overall agreement;
I In the recent history, the model has been

used to simulate BEPC-II transient
behavior, more on that later.
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Parameters
I K. Oide, “FCC-ee Conceptual Machine Design - CDR Plan and Status”,
I A. Butterworth, “Cavity design and beam-cavity interaction challenges”

Parameter Value
Energy 45 GeV
Energy loss per turn 36 MeV
Momentum compaction 14.79× 10−6

Energy spread 3.8× 10−4

Radiation damping time 414 ms
Gap voltage 255 MV
Harmonic number 130680
Buckets filled 70760
R/Q 43.5 Ω
Q0 2× 109

Coupling factor1 11784

1Optimized for zero reflected power at 1390 mA

https://indico.cern.ch/event/556692/contributions/2483406/attachments/1466449/2267364/FCCee_Oide_170529.pdf
https://indico.cern.ch/event/556692/contributions/2484361/
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I Single train is unphysical;
I At 300 mA it is slightly more realistic;
I Bunch length is all over the place;
I As is the synchrotron frequency.
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I At 300 mA it is slightly more realistic;
I Bunch length is all over the place;
I As is the synchrotron frequency.
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Peak−to−peak synchrotron frequency spead 39.90%

I Single train is unphysical;
I At 300 mA it is slightly more realistic;
I Bunch length is all over the place;
I As is the synchrotron frequency.
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Uniform Trains: 2 µs Abort Gap
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Transient is 6.8927 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 66 trains fill

I 66 trains of 1072 filled and 908
empty buckets (2.7/2.3 µs);

I 70752 filled buckets;
I Smaller phase transient, within

reason — 47.9 ps peak-to-peak;
I 0.2% bunch length variation

(peak-to-peak);
I Same range of variation for

synchrotron frequency.
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Uniform Trains: 2 µs Abort Gap
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Transient is 6.8927 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 66 trains fill

I 66 trains of 1072 filled and 908
empty buckets (2.7/2.3 µs);

I 70752 filled buckets;
I Smaller phase transient, within

reason — 47.9 ps peak-to-peak;
I 0.2% bunch length variation

(peak-to-peak);
I Same range of variation for

synchrotron frequency.
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Peak−to−peak bunch length spead 0.02%

I 66 trains of 1072 filled and 908
empty buckets (2.7/2.3 µs);

I 70752 filled buckets;
I Smaller phase transient, within

reason — 47.9 ps peak-to-peak;
I 0.2% bunch length variation

(peak-to-peak);
I Same range of variation for

synchrotron frequency.
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Peak−to−peak synchrotron frequency spead 0.02%

I 66 trains of 1072 filled and 908
empty buckets (2.7/2.3 µs);

I 70752 filled buckets;
I Smaller phase transient, within

reason — 47.9 ps peak-to-peak;
I 0.2% bunch length variation

(peak-to-peak);
I Same range of variation for

synchrotron frequency.
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Uniform Trains: 1 µs Abort Gap
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Transient is 3.3637 degrees peak−to−peak

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

Time (µs)

B
u
n
c
h
 c

u
rr

e
n
t 
(m

A
)

FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 135 trains fill

I 135 trains of 524 filled and 444
empty buckets (1.3/1.1 µs);

I 70740 filled buckets;
I If gap transients are matched (two

rings with identical fill patterns, RF,
total currents), collision point shift is
eliminated;

I Such matching is difficult to maintain
in practice;

I 0.1% bunch length variation
(peak-to-peak);

I Same range of variation for
synchrotron frequency.
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Transient is 3.3637 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 135 trains fill

I 135 trains of 524 filled and 444
empty buckets (1.3/1.1 µs);

I 70740 filled buckets;
I If gap transients are matched (two

rings with identical fill patterns, RF,
total currents), collision point shift is
eliminated;

I Such matching is difficult to maintain
in practice;

I 0.1% bunch length variation
(peak-to-peak);

I Same range of variation for
synchrotron frequency.
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Uniform Trains: 1 µs Abort Gap
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Transient is 3.3637 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 135 trains fill

I 135 trains of 524 filled and 444
empty buckets (1.3/1.1 µs);

I 70740 filled buckets;
I If gap transients are matched (two

rings with identical fill patterns, RF,
total currents), collision point shift is
eliminated;

I Such matching is difficult to maintain
in practice;

I 0.1% bunch length variation
(peak-to-peak);

I Same range of variation for
synchrotron frequency.
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Uniform Trains: 1 µs Abort Gap
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Peak−to−peak bunch length spead 0.01%

I 135 trains of 524 filled and 444
empty buckets (1.3/1.1 µs);

I 70740 filled buckets;
I If gap transients are matched (two

rings with identical fill patterns, RF,
total currents), collision point shift is
eliminated;

I Such matching is difficult to maintain
in practice;

I 0.1% bunch length variation
(peak-to-peak);

I Same range of variation for
synchrotron frequency.
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Peak−to−peak synchrotron frequency spead 0.01%

I 135 trains of 524 filled and 444
empty buckets (1.3/1.1 µs);

I 70740 filled buckets;
I If gap transients are matched (two

rings with identical fill patterns, RF,
total currents), collision point shift is
eliminated;

I Such matching is difficult to maintain
in practice;

I 0.1% bunch length variation
(peak-to-peak);

I Same range of variation for
synchrotron frequency.
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I At 1.39 A detuning is 8.3 kHz;
I That is 2.7 revolution harmonics;
I Full loaded shunt impedance crosses

2 upper synchrotron sidebands;
I Need aggressive RF feedback to

manage longitudinal instabilities;
I Without RF feedback longitudinal

growth time is 1.3 ms (≈ 1/6 of the
synchrotron period);

I Modal tune shifts comparable to the
synchrotron frequency.
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I At 1.39 A detuning is 8.3 kHz;
I That is 2.7 revolution harmonics;
I Full loaded shunt impedance crosses

2 upper synchrotron sidebands;
I Need aggressive RF feedback to

manage longitudinal instabilities;
I Without RF feedback longitudinal

growth time is 1.3 ms (≈ 1/6 of the
synchrotron period);

I Modal tune shifts comparable to the
synchrotron frequency.
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I At 1.39 A detuning is 8.3 kHz;
I That is 2.7 revolution harmonics;
I Full loaded shunt impedance crosses

2 upper synchrotron sidebands;
I Need aggressive RF feedback to

manage longitudinal instabilities;
I Without RF feedback longitudinal

growth time is 1.3 ms (≈ 1/6 of the
synchrotron period);

I Modal tune shifts comparable to the
synchrotron frequency.
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I At 1.39 A detuning is 8.3 kHz;
I That is 2.7 revolution harmonics;
I Full loaded shunt impedance crosses

2 upper synchrotron sidebands;
I Need aggressive RF feedback to

manage longitudinal instabilities;
I Without RF feedback longitudinal

growth time is 1.3 ms (≈ 1/6 of the
synchrotron period);

I Modal tune shifts comparable to the
synchrotron frequency.
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I At 1.39 A detuning is 8.3 kHz;
I That is 2.7 revolution harmonics;
I Full loaded shunt impedance crosses

2 upper synchrotron sidebands;
I Need aggressive RF feedback to

manage longitudinal instabilities;
I Without RF feedback longitudinal

growth time is 1.3 ms (≈ 1/6 of the
synchrotron period);

I Modal tune shifts comparable to the
synchrotron frequency.
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I At 1.39 A detuning is 8.3 kHz;
I That is 2.7 revolution harmonics;
I Full loaded shunt impedance crosses

2 upper synchrotron sidebands;
I Need aggressive RF feedback to

manage longitudinal instabilities;
I Without RF feedback longitudinal

growth time is 1.3 ms (≈ 1/6 of the
synchrotron period);

I Modal tune shifts comparable to the
synchrotron frequency.
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Optimizing Beam Loading, 400 MHz
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Transient is 2.1401 degrees peak−to−peak
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FCC−ee; 56/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 135 trains fill

I With 88 cavities run 570 kW and
2.9 MV forward power and gap
voltage per cavity;

I Push to the limit: 56 cavities, 890 kW
and 4.55 MV;

I Transient is reduced;
I Detuning is down to 1.7 revolution

harmonics;
I Not a big improvement overall.
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Optimizing Beam Loading, 400 MHz
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I With 88 cavities run 570 kW and
2.9 MV forward power and gap
voltage per cavity;

I Push to the limit: 56 cavities, 890 kW
and 4.55 MV;

I Transient is reduced;
I Detuning is down to 1.7 revolution

harmonics;
I Not a big improvement overall.
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Optimizing Beam Loading, 400 MHz
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I With 88 cavities run 570 kW and
2.9 MV forward power and gap
voltage per cavity;

I Push to the limit: 56 cavities, 890 kW
and 4.55 MV;

I Transient is reduced;
I Detuning is down to 1.7 revolution

harmonics;
I Not a big improvement overall.
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Single Bunch Train
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Transient is 3.0494 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 65140by2 fill

I 0.3% gap (400 RF buckets, 1 µs);
I Uniform train of 65140 bunches with

5 ns spacing;
I Bunch length moves around by 3.4%

(peak-to-peak).
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Single Bunch Train
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Transient is 3.0494 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 65140by2 fill

I 0.3% gap (400 RF buckets, 1 µs);
I Uniform train of 65140 bunches with

5 ns spacing;
I Bunch length moves around by 3.4%

(peak-to-peak).
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Single Bunch Train
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Peak−to−peak bunch length spead 3.42%

I 0.3% gap (400 RF buckets, 1 µs);
I Uniform train of 65140 bunches with

5 ns spacing;
I Bunch length moves around by 3.4%

(peak-to-peak).
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Fill Pattern Density Modulation
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Transient is 3.0291 degrees peak−to−peak
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FCC−ee; 88/0 powered/parked cavities; V
gap

 = 255 MV; I
0
 = 1.39 A; 65340 density mod fill

I Idea from J. Byrd et al., Phys. Rev.
ST Accel. Beams 5, 092001 (2002):

I Charge removed from the gap is
added symmetrically to both ends
of the train;

I 200 bunches removed from the gap;
I Rather than double the charge, fill

200 buckets at the ends of the train in
every bucket (2.5 ns) pattern;

I Phase transient peak-to-peak
amplitude is unchanged.
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I Idea from J. Byrd et al., Phys. Rev.
ST Accel. Beams 5, 092001 (2002):

I Charge removed from the gap is
added symmetrically to both ends
of the train;

I 200 bunches removed from the gap;
I Rather than double the charge, fill

200 buckets at the ends of the train in
every bucket (2.5 ns) pattern;

I Phase transient peak-to-peak
amplitude is unchanged.
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I Idea from J. Byrd et al., Phys. Rev.
ST Accel. Beams 5, 092001 (2002):

I Charge removed from the gap is
added symmetrically to both ends
of the train;

I 200 bunches removed from the gap;
I Rather than double the charge, fill

200 buckets at the ends of the train in
every bucket (2.5 ns) pattern;

I Phase transient peak-to-peak
amplitude is unchanged.
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65140by2 (3.05°)

65340 density mod (3.03°)

I Idea from J. Byrd et al., Phys. Rev.
ST Accel. Beams 5, 092001 (2002):

I Charge removed from the gap is
added symmetrically to both ends
of the train;

I 200 bunches removed from the gap;
I Rather than double the charge, fill

200 buckets at the ends of the train in
every bucket (2.5 ns) pattern;

I Phase transient peak-to-peak
amplitude is unchanged.
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I All transients take place at the
ends of the train;

I Mid-train there is very little
synchronous phase variation;

I Bunch length varies by 0.01%
peak to peak;

I Can uniformly spread additional
bunches in the train to match the
desired per bunch current (70758
bunch fill shown).
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I All transients take place at the
ends of the train;

I Mid-train there is very little
synchronous phase variation;

I Bunch length varies by 0.01%
peak to peak;

I Can uniformly spread additional
bunches in the train to match the
desired per bunch current (70758
bunch fill shown).
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I All transients take place at the
ends of the train;

I Mid-train there is very little
synchronous phase variation;

I Bunch length varies by 0.01%
peak to peak;

I Can uniformly spread additional
bunches in the train to match the
desired per bunch current (70758
bunch fill shown).
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65140by2

65340 density mod

I Two fill patterns used earlier:
I 65140by2: one long train of

65140 bunches every other RF
bucket and 400 bucket gap;

I 65340 density mod: long train
with density modulation.

I Both fill pattern spectra show
notches at multiples of
h/400 ≈ 327 revolution
harmonics due to identical 400
bucket gaps;

I Density modulation suppresses
low-frequency revolution
harmonics where cavity
impedance is large.
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65140by2

65340 density mod

I Two fill patterns used earlier:
I 65140by2: one long train of

65140 bunches every other RF
bucket and 400 bucket gap;

I 65340 density mod: long train
with density modulation.

I Both fill pattern spectra show
notches at multiples of
h/400 ≈ 327 revolution
harmonics due to identical 400
bucket gaps;

I Density modulation suppresses
low-frequency revolution
harmonics where cavity
impedance is large.
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65140by2

65340 density mod

I Two fill patterns used earlier:
I 65140by2: one long train of

65140 bunches every other RF
bucket and 400 bucket gap;

I 65340 density mod: long train
with density modulation.

I Both fill pattern spectra show
notches at multiples of
h/400 ≈ 327 revolution
harmonics due to identical 400
bucket gaps;

I Density modulation suppresses
low-frequency revolution
harmonics where cavity
impedance is large.
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200 mA

236 mA

3.05° p2p

2.76° p2p

I Measurements from the Advanced Light
Source in Berkeley:

I A train of 296 buckets, 32 bucket gap;
I Buckets 1–16 and 281–296 filled to

twice the charge.
I A bit of first revolution harmonic due to

the detuned harmonic cavities;
I Measurements from BEPC-II in Beijing:

I Half the ring filled (99 bunches, 4 ns
spacing);

I Partial compensation — 22 bunches at
the ends filled to twice the charge.
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200 mA

236 mA

3.05° p2p

2.76° p2p

I Measurements from the Advanced Light
Source in Berkeley:

I A train of 296 buckets, 32 bucket gap;
I Buckets 1–16 and 281–296 filled to

twice the charge.
I A bit of first revolution harmonic due to

the detuned harmonic cavities;
I Measurements from BEPC-II in Beijing:

I Half the ring filled (99 bunches, 4 ns
spacing);

I Partial compensation — 22 bunches at
the ends filled to twice the charge.
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Measurement

Simulation

Measurement

Simulation

I Measurements from the Advanced Light
Source in Berkeley:

I A train of 296 buckets, 32 bucket gap;
I Buckets 1–16 and 281–296 filled to

twice the charge.
I A bit of first revolution harmonic due to

the detuned harmonic cavities;
I Measurements from BEPC-II in Beijing:

I Half the ring filled (99 bunches, 4 ns
spacing);

I Partial compensation — 22 bunches at
the ends filled to twice the charge.
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Measurement

Simulation

Measurement

Simulation

I Measurements from the Advanced Light
Source in Berkeley:

I A train of 296 buckets, 32 bucket gap;
I Buckets 1–16 and 281–296 filled to

twice the charge.
I A bit of first revolution harmonic due to

the detuned harmonic cavities;
I Measurements from BEPC-II in Beijing:

I Half the ring filled (99 bunches, 4 ns
spacing);

I Partial compensation — 22 bunches at
the ends filled to twice the charge.
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Summary

I FCC-ee (Z) is heavily beam loaded;
I RF system design should be driven by the beam loading considerations;
I Aggressive RF feedback loops will be needed to bring the longitudinal

growth rates within the reach of the bunch-by-bunch feedback systems;
I Fill pattern uniformity is critical for achieving acceptable synchronous

phase and bunch length transients;
I Fill pattern density modulation can shift the transient effects to a small

subset of filled buckets.
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I FCC-ee (Z) is heavily beam loaded;
I RF system design should be driven by the beam loading considerations;
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I FCC-ee (Z) is heavily beam loaded;
I RF system design should be driven by the beam loading considerations;
I Aggressive RF feedback loops will be needed to bring the longitudinal

growth rates within the reach of the bunch-by-bunch feedback systems;
I Fill pattern uniformity is critical for achieving acceptable synchronous
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subset of filled buckets.



Transient beam
loading

Introduction
Beam Loading in Storage
Rings

Model Used

Beam Loading
Simulations
Gap Transients

Detuning

Optimization
Cavity Count

Fill Pattern

Summary

Summary

I FCC-ee (Z) is heavily beam loaded;
I RF system design should be driven by the beam loading considerations;
I Aggressive RF feedback loops will be needed to bring the longitudinal

growth rates within the reach of the bunch-by-bunch feedback systems;
I Fill pattern uniformity is critical for achieving acceptable synchronous

phase and bunch length transients;
I Fill pattern density modulation can shift the transient effects to a small

subset of filled buckets.
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