Transient beam loading
FCC-ee (Z)

D. Teytelman
Dimtel, Inc., San Jose, CA, USA

FCC Week 2017
Outline

Introduction
 Beam Loading in Storage Rings
 Model Used

Beam Loading Simulations
 Gap Transients
 Detuning

Optimization
 Cavity Count
 Fill Pattern
Outline

Introduction
 Beam Loading in Storage Rings
 Model Used

Beam Loading Simulations
 Gap Transients
 Detuning

Optimization
 Cavity Count
 Fill Pattern
Beam/Cavity Interaction

- RLC model of the accelerating cavity with two input currents: generator and beam;
 - Cavity voltage \vec{V}_C is defined by the sum current;
 - Low loading ($\vec{I}_B \ll \vec{I}_G$) — cavity voltage is mostly defined by the generator current;
 - High loading — cavity voltage is strongly modulated by beam current;
 - Like to think of the interaction as a "feedback loop" — beam current source is affected by cavity voltage, while cavity voltage depends on the beam current.
Beam/Cavity Interaction

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage \vec{V}_C is defined by the sum current;
 - Low loading ($\vec{I}_B \ll \vec{I}_G$) — cavity voltage is mostly defined by the generator current;
 - High loading — cavity voltage is strongly modulated by beam current;
- Like to think of the interaction as a “feedback loop” — beam current source is affected by cavity voltage, while cavity voltage depends on the beam current.
Beam/Cavity Interaction

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage \vec{V}_C is defined by the sum current;
- Low loading ($\vec{I}_B \ll \vec{I}_G$) — cavity voltage is mostly defined by the generator current;
- High loading — cavity voltage is strongly modulated by beam current;
- Like to think of the interaction as a “feedback loop” — beam current source is affected by cavity voltage, while cavity voltage depends on the beam current.
Beam/Cavity Interaction

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage \vec{V}_C is defined by the sum current;
- Low loading ($\vec{I}_B \ll \vec{I}_G$) — cavity voltage is mostly defined by the generator current;
- High loading — cavity voltage is strongly modulated by beam current;
- Like to think of the interaction as a “feedback loop” — beam current source is affected by cavity voltage, while cavity voltage depends on the beam current.
Beam/Cavity Interaction

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage \vec{V}_C is defined by the sum current;
- Low loading ($\vec{I}_B \ll \vec{I}_G$) — cavity voltage is mostly defined by the generator current;
- High loading — cavity voltage is strongly modulated by beam current;
- Like to think of the interaction as a “feedback loop” — beam current source is affected by cavity voltage, while cavity voltage depends on the beam current.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Synchronous phase transients;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Transient modulation of longitudinal optics;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Transient modulation of longitudinal optics;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Transient modulation of longitudinal optics;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Transient modulation of longitudinal optics;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
 - But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Transient modulation of longitudinal optics;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Why Worry about Beam Loading

- Two main effects of heavy beam loading:
 - Transient modulation of longitudinal optics;
 - Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance
- Transient effects depend on
 - Total beam loading;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.
Phasor Diagram

- Phasors at RF frequency, cavity voltage on X axis;
 - Synchronous phase ϕ_B is determined by RF voltage, energy loss per turn;
 - For minimum generator power keep loading angle $\phi_L = 0$;
 - Cavity is detuned to maintain proper phase angle ϕ_Z between the total current and the cavity voltage;
 - PEP-II example: $I_B = 6$ A, $I_G = 1.7$ A;
 - To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
Phasor Diagram

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase ϕ_B is determined by RF voltage, energy loss per turn;
- For minimum generator power keep loading angle $\phi_L = 0$;
- Cavity is detuned to maintain proper phase angle ϕ_Z between the total current and the cavity voltage;
- PEP-II example: $I_B = 6$ A, $I_G = 1.7$ A;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
Phasors at RF frequency, cavity voltage on X axis;

Synchronous phase ϕ_B is determined by RF voltage, energy loss per turn;

For minimum generator power keep loading angle $\phi_L = 0$;

Cavity is detuned to maintain proper phase angle ϕ_Z between the total current and the cavity voltage;

PEP-II example: $I_B = 6 \text{ A}$, $I_G = 1.7 \text{ A}$;

To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
Phasor Diagram

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase ϕ_B is determined by RF voltage, energy loss per turn;
- For minimum generator power keep loading angle $\phi_L = 0$;
- Cavity is detuned to maintain proper phase angle ϕ_Z between the total current and the cavity voltage;
- PEP-II example: $I_B = 6$ A, $I_G = 1.7$ A;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
Phasor Diagram

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase ϕ_B is determined by RF voltage, energy loss per turn;
- For minimum generator power keep loading angle $\phi_L = 0$;
- Cavity is detuned to maintain proper phase angle ϕ_Z between the total current and the cavity voltage;
- PEP-II example: $I_B = 6$ A, $I_G = 1.7$ A;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase ϕ_B is determined by RF voltage, energy loss per turn;
- For minimum generator power keep loading angle $\phi_L = 0$;
- Cavity is detuned to maintain proper phase angle ϕ_Z between the total current and the cavity voltage;
- PEP-II example: $I_B = 6$ A, $I_G = 1.7$ A;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
The Model

- Small-signal model developed by Flemming Pedersen;
- Model extended to include low-frequency coupled-bunch modes;
- Using reduced version that assumes no amplitude or phase modulation from the RF system.
The Model

- Small-signal model developed by Flemming Pedersen;
- Model extended to include low-frequency coupled-bunch modes;
- Using reduced version that assumes no amplitude or phase modulation from the RF system.
The Model

- Small-signal model developed by Flemming Pedersen;
- Model extended to include low-frequency coupled-bunch modes;
- Using reduced version that assumes no amplitude or phase modulation from the RF system.
Synchrotron Frequency and Bunch Length

- Start from computing large-signal operating point (cavity detuning, RF power);
 - At that operating point, set up the small-signal model;
 - Compute a_V and p_V at 130680 points spaced by T_{RF};
 - For each bunch calculate
 \[
 \omega_S^k = \sqrt{-\frac{\alpha e \omega_{RF}}{E T_0}} |V_k| \sin \phi_k
 \]
 \[
 \sigma_z^k = \frac{\alpha c}{\omega_S^k} \sigma_E
 \]
Synchrotron Frequency and Bunch Length

- Start from computing large-signal operating point (cavity detuning, RF power);
- At that operating point, set up the small-signal model;
- Compute a_V and p_V at 130680 points spaced by T_{RF};
- For each bunch calculate
 \[
 \omega^k_S = \sqrt{-\frac{\alpha c \epsilon_{RF}}{E_0} |V_k| \sin \phi_k}
 \]
 \[
 \sigma^k_z = \frac{\alpha c}{\omega^k_S} \sigma_E
 \]
Synchrotron Frequency and Bunch Length

- Start from computing large-signal operating point (cavity detuning, RF power);
- At that operating point, set up the small-signal model;
- Compute a_V and p_V at 130680 points spaced by T_{RF};
- For each bunch calculate
 \[\omega^k_s = \sqrt{-\frac{\alpha e \omega_{RF}}{E T_0}} |V_k| \sin \phi_k \]
 \[\sigma^k_z = \frac{\alpha c}{\omega^k_s} \sigma_E \]
Synchrotron Frequency and Bunch Length

- Start from computing large-signal operating point (cavity detuning, RF power);
- At that operating point, set up the small-signal model;
- Compute a_V and p_V at 130680 points spaced by T_{RF};
- For each bunch calculate
 \[
 \omega^k_s = \sqrt{-\frac{\alpha_e \omega_{\text{RF}}}{E_i} |V_k| \sin \phi_k}
 \]
 \[
 \sigma_z^k = \frac{\alpha_c}{\omega_s^k} \sigma_E
 \]
Model Verification

- The model has been developed for ALS and PEP-II;
- PEP-II HER measurement and model output;
 - Reasonable overall agreement;
 - In the recent history, the model has been used to simulate BEPC-II transient behavior, more on that later.
Model Verification

- The model has been developed for ALS and PEP-II;
- PEP-II HER measurement and model output;
- Reasonable overall agreement;
- In the recent history, the model has been used to simulate BEPC-II transient behavior, more on that later.
The model has been developed for ALS and PEP-II;

- PEP-II HER measurement and model output;
- Reasonable overall agreement;
- In the recent history, the model has been used to simulate BEPC-II transient behavior, more on that later.
Parameters

- A. Butterworth, “Cavity design and beam-cavity interaction challenges”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>45 GeV</td>
</tr>
<tr>
<td>Energy loss per turn</td>
<td>36 MeV</td>
</tr>
<tr>
<td>Momentum compaction</td>
<td>14.79×10^{-6}</td>
</tr>
<tr>
<td>Energy spread</td>
<td>3.8×10^{-4}</td>
</tr>
<tr>
<td>Radiation damping time</td>
<td>414 ms</td>
</tr>
<tr>
<td>Gap voltage</td>
<td>255 MV</td>
</tr>
<tr>
<td>Harmonic number</td>
<td>130680</td>
</tr>
<tr>
<td>Buckets filled</td>
<td>70760</td>
</tr>
<tr>
<td>R/Q</td>
<td>43.5 Ω</td>
</tr>
<tr>
<td>Q_0</td>
<td>2×10^9</td>
</tr>
<tr>
<td>Coupling factor1</td>
<td>11784</td>
</tr>
</tbody>
</table>

1Optimized for zero reflected power at 1390 mA
Outline

Introduction
 Beam Loading in Storage Rings
 Model Used

Beam Loading Simulations
 Gap Transients
 Detuning

Optimization
 Cavity Count
 Fill Pattern
Single Train

- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.
Single Train

- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.
Single Train

- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.
Single Train

- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.
Uniform Trains: 2 µs Abort Gap

- 66 trains of 1072 filled and 908 empty buckets (2.7/2.3 µs);
- 70752 filled buckets;
- Smaller phase transient, within reason — 47.9 ps peak-to-peak;
- 0.2% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 2 µs Abort Gap

66 trains of 1072 filled and 908 empty buckets (2.7/2.3 µs);
70752 filled buckets;
Smaller phase transient, within reason — 47.9 ps peak-to-peak;
0.2% bunch length variation (peak-to-peak);
Same range of variation for synchrotron frequency.
Uniform Trains: 2 µs Abort Gap

- 66 trains of 1072 filled and 908 empty buckets (2.7/2.3 µs);
- 70752 filled buckets;
- Smaller phase transient, within reason — 47.9 ps peak-to-peak;
- 0.2% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 2 µs Abort Gap

- 66 trains of 1072 filled and 908 empty buckets (2.7/2.3 µs);
- 70752 filled buckets;
- Smaller phase transient, within reason — 47.9 ps peak-to-peak;
- 0.2% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 1 µs Abort Gap

- 135 trains of 524 filled and 444 empty buckets (1.3/1.1 µs);
- 70740 filled buckets;
- If gap transients are matched (two rings with identical fill patterns, RF, total currents), collision point shift is eliminated;
- Such matching is difficult to maintain in practice;
- 0.1% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 1 µs Abort Gap

- 135 trains of 524 filled and 444 empty buckets (1.3/1.1 µs);
- 70740 filled buckets;
- If gap transients are matched (two rings with identical fill patterns, RF, total currents), collision point shift is eliminated;

Such matching is difficult to maintain in practice;
- 0.1% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 1 µs Abort Gap

- 135 trains of 524 filled and 444 empty buckets (1.3/1.1 µs);
- 70740 filled buckets;
- If gap transients are matched (two rings with identical fill patterns, RF, total currents), collision point shift is eliminated;
- Such matching is difficult to maintain in practice;
- 0.1% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 1 µs Abort Gap

- 135 trains of 524 filled and 444 empty buckets (1.3/1.1 µs);
- 70740 filled buckets;
- If gap transients are matched (two rings with identical fill patterns, RF, total currents), collision point shift is eliminated;
- Such matching is difficult to maintain in practice;
- 0.1% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Uniform Trains: 1 µs Abort Gap

- 135 trains of 524 filled and 444 empty buckets (1.3/1.1 µs);
- 70740 filled buckets;
- If gap transients are matched (two rings with identical fill patterns, RF, total currents), collision point shift is eliminated;
- Such matching is difficult to maintain in practice;
- 0.1% bunch length variation (peak-to-peak);
- Same range of variation for synchrotron frequency.
Outline

Introduction
 Beam Loading in Storage Rings
 Model Used

Beam Loading Simulations
 Gap Transients
 Detuning

Optimization
 Cavity Count
 Fill Pattern
At 1.39 A detuning is 8.3 kHz;
That is 2.7 revolution harmonics;
Full loaded shunt impedance crosses 2 upper synchrotron sidebands;
Need aggressive RF feedback to manage longitudinal instabilities;
Without RF feedback longitudinal growth time is 1.3 ms (≈ 1/6 of the synchrotron period);
Modal tune shifts comparable to the synchrotron frequency.
Detuning

At 1.39 A detuning is 8.3 kHz;
- That is 2.7 revolution harmonics;
- Full loaded shunt impedance crosses 2 upper synchrotron sidebands;
- Need aggressive RF feedback to manage longitudinal instabilities;
- Without RF feedback longitudinal growth time is 1.3 ms ($\approx 1/6$ of the synchrotron period);
- Modal tune shifts comparable to the synchrotron frequency.
At 1.39 A detuning is 8.3 kHz;
That is 2.7 revolution harmonics;
Full loaded shunt impedance crosses 2 upper synchrotron sidebands;
Need aggressive RF feedback to manage longitudinal instabilities;
Without RF feedback longitudinal growth time is 1.3 ms (≈ 1/6 of the synchrotron period);
Modal tune shifts comparable to the synchrotron frequency.
At 1.39 A detuning is 8.3 kHz;
That is 2.7 revolution harmonics;
Full loaded shunt impedance crosses 2 upper synchrotron sidebands;
Need aggressive RF feedback to manage longitudinal instabilities;
Without RF feedback longitudinal growth time is 1.3 ms ($\approx 1/6$ of the synchrotron period);
Modal tune shifts comparable to the synchrotron frequency.
Detuning

- At 1.39 A detuning is 8.3 kHz;
- That is 2.7 revolution harmonics;
- Full loaded shunt impedance crosses 2 upper synchrotron sidebands;
- Need aggressive RF feedback to manage longitudinal instabilities;
- Without RF feedback longitudinal growth time is 1.3 ms ($\approx 1/6$ of the synchrotron period);
- Modal tune shifts comparable to the synchrotron frequency.
At 1.39 A detuning is 8.3 kHz;
That is 2.7 revolution harmonics;
Full loaded shunt impedance crosses 2 upper synchrotron sidebands;
Need aggressive RF feedback to manage longitudinal instabilities;
Without RF feedback longitudinal growth time is 1.3 ms (≈ 1/6 of the synchrotron period);
Modal tune shifts comparable to the synchrotron frequency.
Outline

Introduction
 Beam Loading in Storage Rings
 Model Used

Beam Loading Simulations
 Gap Transients
 Detuning

Optimization
 Cavity Count
 Fill Pattern
Optimizing Beam Loading, 400 MHz

With 88 cavities run 570 kW and 2.9 MV forward power and gap voltage per cavity;

Push to the limit: 56 cavities, 890 kW and 4.55 MV;

Transient is reduced;

Detuning is down to 1.7 revolution harmonics;

Not a big improvement overall.
Optimizing Beam Loading, 400 MHz

- With 88 cavities run 570 kW and 2.9 MV forward power and gap voltage per cavity;
- Push to the limit: 56 cavities, 890 kW and 4.55 MV;
- Transient is reduced;
- Detuning is down to 1.7 revolution harmonics;
- Not a big improvement overall.
With 88 cavities run 570 kW and 2.9 MV forward power and gap voltage per cavity;
Push to the limit: 56 cavities, 890 kW and 4.55 MV;
Transient is reduced;
Detuning is down to 1.7 revolution harmonics;
Not a big improvement overall.
Outline

Introduction
 Beam Loading in Storage Rings
 Model Used

Beam Loading Simulations
 Gap Transients
 Detuning

Optimization
 Cavity Count
 Fill Pattern

Summary
Single Bunch Train

- 0.3% gap (400 RF buckets, 1 µs);
- Uniform train of 65140 bunches with 5 ns spacing;
- Bunch length moves around by 3.4% (peak-to-peak).
Single Bunch Train

- 0.3% gap (400 RF buckets, 1 µs);
- Uniform train of 65140 bunches with 5 ns spacing;
- Bunch length moves around by 3.4% (peak-to-peak).
Single Bunch Train

- 0.3% gap (400 RF buckets, 1 µs);
- Uniform train of 65140 bunches with 5 ns spacing;
- Bunch length moves around by 3.4% (peak-to-peak).
Fill Pattern Density Modulation

 - Charge removed from the gap is added symmetrically to both ends of the train;
 - 200 bunches removed from the gap;
 - Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
 - Phase transient peak-to-peak amplitude is unchanged.
Fill Pattern Density Modulation

FCC-ee; 88/0 powered/parked cavities; $V_{\text{gap}} = 255$ MV; $I_0 = 1.39$ A; 65340 density mod fill

 - Charge removed from the gap is added symmetrically to both ends of the train;
- 200 bunches removed from the gap;
- Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
- Phase transient peak-to-peak amplitude is unchanged.

![Graph showing bunch current over time](image1)

![Graph showing phase transient over time](image2)
Fill Pattern Density Modulation

FCC−ee; 88/0 powered/parked cavities; $V_{gap} = 255$ MV; $I_0 = 1.39$ A; 65340 density mod fill

 - Charge removed from the gap is added symmetrically to both ends of the train;
 - 200 bunches removed from the gap;
 - Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
 - Phase transient peak-to-peak amplitude is unchanged.
Fill Pattern Density Modulation

 - Charge removed from the gap is added symmetrically to both ends of the train;
 - 200 bunches removed from the gap;
 - Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
 - Phase transient peak-to-peak amplitude is unchanged.
Fill Pattern Density Modulation (Continued)

FCC−ee; 88/0 powered/parked cavities; \(V_{\text{gap}} = 255 \text{ MV} \); \(I_0 = 1.39 \text{ A} \); 65340 density mod fill

- All transients take place at the ends of the train;
- Mid-train there is very little synchronous phase variation;
- Bunch length varies by 0.01% peak to peak;
- Can uniformly spread additional bunches in the train to match the desired per bunch current (70758 bunch fill shown).
All transients take place at the ends of the train;

Mid-train there is very little synchronous phase variation;

Bunch length varies by 0.01% peak to peak;

Can uniformly spread additional bunches in the train to match the desired per bunch current (70758 bunch fill shown).
Fill Pattern Density Modulation (Continued)

FCC−ee; 88/0 powered/parked cavities; $V_{\text{gap}} = 255 \text{ MV}$; $I_0 = 1.39 \text{ A}$; 70758 1us gap mod fill

- All transients take place at the ends of the train;
- Mid-train there is very little synchronous phase variation;
- Bunch length varies by 0.01% peak to peak;
- Can uniformly spread additional bunches in the train to match the desired per bunch current (70758 bunch fill shown).
How Does Fill Pattern Modulation Work?

- Two fill patterns used earlier:
 - 65140by2: one long train of 65140 bunches every other RF bucket and 400 bucket gap;
 - 65340 density mod: long train with density modulation.

- Both fill pattern spectra show notches at multiples of $h/400 \approx 327$ revolution harmonics due to identical 400 bucket gaps;

- Density modulation suppresses low-frequency revolution harmonics where cavity impedance is large.
How Does Fill Pattern Modulation Work?

- Two fill patterns used earlier:
 - 65140by2: one long train of 65140 bunches every other RF bucket and 400 bucket gap;
 - 65340 density mod: long train with density modulation.

- Both fill pattern spectra show notches at multiples of \(h/400 \approx 327 \) revolution harmonics due to identical 400 bucket gaps;

- Density modulation suppresses low-frequency revolution harmonics where cavity impedance is large.
Two fill patterns used earlier:
- 65140by2: one long train of 65140 bunches every other RF bucket and 400 bucket gap;
- 65340 density mod: long train with density modulation.

Both fill pattern spectra show notches at multiples of $h/400 \approx 327$ revolution harmonics due to identical 400 bucket gaps;

Density modulation suppresses low-frequency revolution harmonics where cavity impedance is large.
Does Fill Pattern Modulation Work?

- Measurements from the Advanced Light Source in Berkeley:
 - A train of 296 buckets, 32 bucket gap;
 - Buckets 1–16 and 281–296 filled to twice the charge.

- A bit of first revolution harmonic due to the detuned harmonic cavities;

- Measurements from BEPC-II in Beijing:
 - Half the ring filled (99 bunches, 4 ns spacing);
 - Partial compensation — 22 bunches at the ends filled to twice the charge.
Does Fill Pattern Modulation Work?

- Measurements from the Advanced Light Source in Berkeley:
 - A train of 296 buckets, 32 bucket gap;
 - Buckets 1–16 and 281–296 filled to twice the charge.

- A bit of first revolution harmonic due to the detuned harmonic cavities;

 - Measurements from BEPC-II in Beijing:
 - Half the ring filled (99 bunches, 4 ns spacing);
 - Partial compensation — 22 bunches at the ends filled to twice the charge.
Does Fill Pattern Modulation Work?

- Measurements from the Advanced Light Source in Berkeley:
 - A train of 296 buckets, 32 bucket gap;
 - Buckets 1–16 and 281–296 filled to twice the charge.

- A bit of first revolution harmonic due to the detuned harmonic cavities;

- Measurements from BEPC-II in Beijing:
 - Half the ring filled (99 bunches, 4 ns spacing);
 - Partial compensation — 22 bunches at the ends filled to twice the charge.
Does Fill Pattern Modulation Work?

- Measurements from the Advanced Light Source in Berkeley:
 - A train of 296 buckets, 32 bucket gap;
 - Buckets 1–16 and 281–296 filled to twice the charge.
- A bit of first revolution harmonic due to the detuned harmonic cavities;
- Measurements from BEPC-II in Beijing:
 - Half the ring filled (99 bunches, 4 ns spacing);
 - Partial compensation — 22 bunches at the ends filled to twice the charge.
Summary

- FCC-ee (Z) is heavily beam loaded;
- RF system design should be driven by the beam loading considerations;
- Aggressive RF feedback loops will be needed to bring the longitudinal growth rates within the reach of the bunch-by-bunch feedback systems;
- Fill pattern uniformity is critical for achieving acceptable synchronous phase and bunch length transients;
- Fill pattern density modulation can shift the transient effects to a small subset of filled buckets.
Summary

- FCC-ee (Z) is heavily beam loaded;
- RF system design should be driven by the beam loading considerations;
 - Aggressive RF feedback loops will be needed to bring the longitudinal growth rates within the reach of the bunch-by-bunch feedback systems;
 - Fill pattern uniformity is critical for achieving acceptable synchronous phase and bunch length transients;
 - Fill pattern density modulation can shift the transient effects to a small subset of filled buckets.
Summary

- FCC-ee (Z) is heavily beam loaded;
- RF system design should be driven by the beam loading considerations;
- Aggressive RF feedback loops will be needed to bring the longitudinal growth rates within the reach of the bunch-by-bunch feedback systems;
- Fill pattern uniformity is critical for achieving acceptable synchronous phase and bunch length transients;
- Fill pattern density modulation can shift the transient effects to a small subset of filled buckets.
Summary

- FCC-ee (Z) is heavily beam loaded;
- RF system design **should** be driven by the beam loading considerations;
- Aggressive RF feedback loops will be needed to bring the longitudinal growth rates within the reach of the bunch-by-bunch feedback systems;
- Fill pattern uniformity is critical for achieving acceptable synchronous phase and bunch length transients;
- Fill pattern density modulation can shift the transient effects to a small subset of filled buckets.
Summary

- FCC-ee (Z) is heavily beam loaded;
- RF system design should be driven by the beam loading considerations;
- Aggressive RF feedback loops will be needed to bring the longitudinal growth rates within the reach of the bunch-by-bunch feedback systems;
- Fill pattern uniformity is critical for achieving acceptable synchronous phase and bunch length transients;
- Fill pattern density modulation can shift the transient effects to a small subset of filled buckets.