

Top-up injection scheme

Masamitsu Aiba, PSI Thanks to B. Goddard, K. Oide, Y. Papaphilippou, F. Zimmermann, and many colleagues 31.05.2017 FCC Week 2017, Berlin

Contents

- Introduction: Summary from previous studies
 - Conventional injection scheme
 - Multipole kicker injection
- Possible improvements
- Injection kicker/septum pulse duration
- Summary and next steps

Summary from previous studies

- Top-up injection is essential for FCC-ee; Beam lifetime is ~1 hour (tt)
- Previous studies focused on tt operation mode parameters
- Requirements/Assumptions for designing top-up injection system
 - Similar emittance in booster and collider (~1.3 nm @ 175 GeV)
 - ~1.5 km straight section available in collider
 - 5σ clearance for high injection efficiency
 - (Limited) dynamic aperture: ~15 sigma for on-energy, 5 sigma up to +/- 2% off-energy
 - c.f. SLS: ~15 mm dynamic aperture corresponds to ~ 100 sigma
 - Septum

PAUL SCHERRER INSTITU

- Magnetic septum: Blade thickness of 5 mm (3 mm + mechanical margin)
- Electrostatic septum: Wire septum of 0.2 mm (~20 um + mechanical margin)
- Two viable injection schemes found, but with some "weak points"
 - Conventional injection scheme (on-energy/off-energy)
 - Both on- and off-energy injection require a wire septum or beta function at septum >1 km
 - Beam disturbance (coherent betatron oscillation) due to a bump leakage in practice
 - Multipole kicker injection (on-energy/off-energy)
 - Nonlinear kicker may be essential to avoid strong injection beam mismatch
 - Unavoidable emittance growth up to 30% due to the limited dynamic aperture
- On-axis (off-energy) injection is preferable due to higher injection efficiency and lower detector backgrounds foreseen

Conventional injection

Required dynamic aperture as a function of beta at kicker/septum

Optics and orbits, example for on-energy injection with wire septum

Multipole kicker injection

How the beams are "packed" into limited dynamic aperture...

Optics and orbits, example for on-energy injection with septum (5 mm)

Injection system specifications (tt)

Parameters	Conventional injection (on-/off-energy)	Multipole kicker injection (on-/off-energy)			
Minimum beta function at septum and kicker (m)	310/310 or 1200/1800	~400 m			
Type of kicker	Dipole kickers	Nonlinear kicker			
Integrated kicker field (Tm)	0.012/0.025 or weaker	0.025/0.03 (Plateau)			
Type of septum	Wire septum or 5-mm septum	5-mm septum			
Required DA, on-energy/off-energy (တ)	~15/5@-1.8%	15/5@-2%			

Remarks:

SCHERRER INSTITU

- Required kicker field strengths are modest values even though high beam energy (175 GeV)
- Wire septum can be avoided but it minimises the requirement of dynamic aperture in the conventional injection scheme, enabling higher injection efficiency or even lower β^*
- Kicker and septum pulse durations are missing
- Need to go through other operation modes; e.g. off-momentum dynamic aperture may be about ±1% in Z mode...

Possible improvements

for conventional injection (1)

"Compensation septum"

- Reconsideration of magnetic septum assumptions
 - Present assumption: 3 mm blade (5 mm septum thickness with margin)
 - To achieve strong enough field (>0.5 T) to inflect the injection beam
 - The blade should be thick enough to suppress stray field
 - Thinner septum?
 - Field of ~0.1 T is enough; a large ring beta and very long straight section available
 - Allow (some) stray field but compensate for by *other means* rather than by thick blade
 - With a lower field and a less stringent stray field criterion, the thickness can be thinner
 - Possible revised assumption: 1.5 mm including mechanical margin
 - Ease the conventional injection scheme, still with the advantage of lowering the dynamic aperture requirement

for conventional injection (2)

"Compensation septum"

- "Compensation septum" (or "Dummy septum")
 - Put another septum to compensate for the stray field disturbance
 - -2π injection orbit bump with Compensation and Injection septa at the peak of bump with a π phase advance in-between
 - Stray field generates a *closed* π bump \rightarrow Bump leakage due septum stray field is suppressed
 - Orbit bumpers and septa do not necessarily have same pulse duration/shape

"Compensation septum" for conventional injection (3)

Optics and orbits for on-energy injection with thin septum and compensation septum

for multipole kicker injection

- "Compensation kicker": Similar approach to Compensation septum
 - Compensate for the emittance growth by another kicker
 - With π phase advance between two kickers, the disturbance to the beam is compensated (up to any high multipole)

Beams in phase space

Kicker/septum pulse duration (1)

FCC-ee injector parameters (new

Accelerator	FCCee-Z		FCCee-W		FCCee-H		FCCee-tt	
Energy [<u>GeV]</u>	45.6		80		120		175	
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up
LINAC # bunches, with 2.8 GHz RF	2		1					
LINAC repetition rate [Hz]	20	0	100					
LINAC/SPS bunch population [10 ¹⁰]	2.66	0.27	1.88	0.15	0.77	0.20	2.77	0.55
# of LINAC injections	355	1775	263		60		62	
SPS bunch spacing [ns]	2.5		50		380		280	
# SPS cycles	10		20		13		1	
SPS # of bunches	710	3550	263		60		62	
SPS cycle time [s]	2.28	9.38	3.13		1.10		1.12	
SPS duty factor	0.79	0.94	0.91		0.15	0.70	0.16	
BR # of bunches	7100	35500	5260		780		62	
BR cycle time [s]	26.75	97.75	68.6		7.1	20.3	7	7.12
#of BR cycles	20	2	4	1	13	1	10	1
# of injections/collider bucket	2	1	4	1	13	1	10	1
Total number of bunches	71000		5260		780		62	
Filling time (both species) [sec]	1070	391	548.8	84.6	184.6	40.6	142.4	14.2
Injected bunch population [10 ¹⁰]	4.3	0.21	6.0	0.12	8.0	0.16	22.1	0.44

Table by Y. PapaphilippouTalks for injector complex

Thursday morning

To determine the collider injection kicker/septum pulse length, start-to-end filling scheme should be defined

Kicker/septum pulse duration (2)

C = 97.75 km = ~326 µs =130333+1 buckets

Kicker/septum pulse duration (3)

Two extreme cases are studied, and a collider injection kicker/septum with 10 μ s flat top works for both.

Summary and next steps

- Two viable injection schemes identified (from previous studies)
- Possible improvements in these schemes are under investigation
- First investigation of collider ring injection kicker/septum pulse duration: a flat top of 10 μs is a candidate. (Need to go through all the operation modes.)
- Next steps towards CDR
 - Failure scenario to be discussed; Stored beam energy is >20 MJ in Z operation mode
 - Further tracking studies to evaluate/improve dynamic aperture and injection efficiencies (T. Tydecks et al.)
 - Select 'Plan A': Conventional injection or Multipole injection
 - Hardware consideration/design

Idea for nonlinear kicker

• Sextupole-like nonlinear kicker:

Two C-shape kickers

Dipole kicker to cancel the dipole component at the centre

Field profile expected for on-energy inj. (Poisson computation for static field)

