Effect of transverse pressure on Nb$_3$Sn wires

An electromechanical study

Luc GAMPERLE, Christian BARTH, Carmine SENATORE
Département de Physique de la Matière Quantique, Université de Genève, Switzerland

Bernardo BORDINI, Davide TOMMASIN
CERN, Switzerland
Motivation

High field dipoles based on high J_c Nb$_3$Sn Rutherford cables require coil pre-stresses larger than 100 MPa, with peak stress of \sim200 MPa at operation.

Are the Nb$_3$Sn wires in the cable able to withstand such a high stress level? Which degradation is tolerable?

- Nb$_3$Sn wires are deformed during cabling
- Cables are braided with glass fiber
- The winding is impregnated with resin

Is it possible to extrapolate the behaviour of the cable from a single wire experiment?
Outline

The WASP concept for I_c vs transverse force measurements

How it works

Results on impregnated PIT Nb$_3$Sn wires
 - Effects of wire rolling
 - Effects of glass fiber insulation

Preliminary tests on RRP Nb$_3$Sn wires

Conclusions & Outlook
The WASP concept for I_c vs. transverse stress

3 groove widths
- 1.30 mm
- 1.15 mm
- 1.00 mm

4-WALL + impregnation

Pulling force

Sample
Epoxy

Wire impregnated with epoxy applied stress uniformly distributed

CERN-UNIGE collaboration agreements KE1629/TE and KE2196/TE
How the measurement works

![Graph showing the measurement process](image)

- **Wire ID**: #31712
- **Diameter [mm]**: 1.0
- **# of filaments**: 192
- **Filament size/shape**: ~50 µm round
- **Cu/nonCu**: 1.22
- **Non-Cu $J_c(12T, 4.2K)$ [A/mm²]**: 2450

@ 4.2K, 19 T

Legend:
- #31712-2
- unload

Transverse force [kN]

<table>
<thead>
<tr>
<th>Transverse force [kN]</th>
<th>Current [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>60</td>
</tr>
<tr>
<td>1.0</td>
<td>80</td>
</tr>
<tr>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td>2.0</td>
<td>120</td>
</tr>
<tr>
<td>2.5</td>
<td>140</td>
</tr>
<tr>
<td>3.0</td>
<td>160</td>
</tr>
<tr>
<td>3.5</td>
<td>180</td>
</tr>
</tbody>
</table>

Electric field [μV/cm]

<table>
<thead>
<tr>
<th>Electric field [μV/cm]</th>
<th>Current [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>0.5</td>
<td>80</td>
</tr>
<tr>
<td>1.0</td>
<td>100</td>
</tr>
<tr>
<td>1.5</td>
<td>120</td>
</tr>
<tr>
<td>2.0</td>
<td>140</td>
</tr>
<tr>
<td>2.5</td>
<td>160</td>
</tr>
<tr>
<td>3.0</td>
<td>180</td>
</tr>
</tbody>
</table>
I_c vs. transverse stress: Reproducibility

The irreversible limit is defined at the force level leading to a 95% recovery of the initial I_c after unload.

Here

$F_{irr} = 16 \text{ kN}$

The corresponding irreversible stress limit is

$\sigma_{irr} = 110 \text{ MPa}$

where

$\text{Stress} = \frac{\text{Force}}{\text{groove length} \times \text{groove width}}$

Results consistent with data taken in 2012 on wire #0904
Effects of wire rolling on the stress tolerance

Samples deformed at CERN and reacted at UNIGE

15% rolling to simulate the wire deformation during cabling

Better redistribution of the applied stress in the wire
I_c vs. transverse stress on 15% rolled wires

Graph:
- PIT #31712 Ø = 1.0 mm
- @ 4.2K, 19 T

Axes:
- Transverse force [kN]
- Transverse stress [MPa]

Data Points:
- Sample #1 round
- Sample #1 round after force unload
- Sample #2 15% rolled
- Sample #2 15% rolled after force unload

Normalized I_c:
- Round vs. 15% rolled
- Shift of σ_{irr} by ~ 40 MPa

Summary:
- $F_{irr} = 22$ kN
- $\sigma_{irr} = 150$ MPa
I_c vs. transverse stress: round vs. 15% rolled

The curve for the rolled wire starts from lower I_c but above 10 kN merges with the curve for the round wire.

Same behavior for the unload points.

Above 20 kN the points overlap.

I_c degradation in PIT wires upon rolling is currently observed.

RRP wires exhibits no or negligible degradation upon rolling.

Critical current

Round vs. 15% rolled
Without any applied load, the Kramer field is the same for the round and the rolled wire.

At $\sigma = 110$ MPa, the Kramer field decreases by about 2 T.
\(I_c \) vs. transverse stress: wire in a glass fiber sleeve

The wire with glass fiber sleeve was measured in a larger groove (1.30 mm vs 1.15 mm)

Shift of \(\sigma_{irr} \) by > 50 MPa
$\frac{I_c}{I_{c0}}$ vs. $\frac{I_{c \text{ unload}}}{I_{c0}}$

@ 4.2K, 19 T

Green curve – bad mounting
... about the mechanisms behind the irreversible degradation ...
FEM: stress redistribution in the wire

Irreversible degradation is determined by filament cracks and residual strain on Nb_3Sn imposed by plastically deformed Cu.

FEM suggests that smaller filaments and higher Cu/nonCu ratio lead to higher stress tolerance.

C. Calzolaio, CS et al., SuST 28 (2015) 055014
... some tests on RRP
RRP: 132/169 vs. 108/127

RRP 132/169

Irreversible stress limit > 200 MPa

RRP 108/127

Irreversible stress limit at ~130 MPa
XRD Microtomography
Void morphology in RRP wires

Experiments performed at the European Synchrotron Radiation Facility
from Sep 30 to Oct 02 2015
Conclusions
Conclusions and outlook

Consolidating a tool for testing the electromechanical properties of SC wires at conditions "close to" the operation in a Rutherford cable

Tested PIT wires after rolling and with glass fiber insulation

Observed a scaling of I_c after unload vs. I_c upon loading

Preliminary investigations on RRP wires already performed

Include in the FE model the distribution of voids in the superconducting subelements, as obtained from synchrotron microtomography

Perform a systematic investigation on the type of impregnation
Thank You!

Carmine SENATORE
carmine.senatore@unige.ch
http://supra.unige.ch

Organisation Committee
- Lucio Rossi, CERN | Conference Chair
- Luca Bottura, CERN | Conference Chair
- Amalia Ballarino, CERN | Industrial exhibition
- Pierluigi Bruzzone, EPFL/SPC | Program Chair
- Carmine Senatore, UNIGE/DQMP | Editor
I_c/I_{c0} vs. transverse stress: field dependence

PIT #29992

600C/100h + 625C/200h

Data from 2013

$PIT \#29992 \ \varnothing = 0.85 \ \text{mm}$

was measured in the 1.15 mm groove

$\sigma_{irr} \approx 130 \ \text{MPa}$ and

$\text{Stress} = \frac{\text{Force}}{\text{groove length} \times \text{groove width}}$
I_c vs. transverse stress: glass fiber sleeve – test #1

PIT #31712
620C/100h + 640C/90h

PIT #14310
620C/120h + 650C/90h

PIT #14310 with glass fiber sleeve was measured in a larger groove (1.30 mm vs 1.15 mm)

$\sigma_{irr} \approx 150$ MPa !! We need a systematic study of the resins
I_c / I_{c0} vs. I_c^{unload} / I_{c0}

- #0904 data from 2012
- #31712-1
- #31712-2
- #31712-3 bad mounting
- #14310 glass fiber sleeve
- #31712 rolled #1
- #31712 rolled #2

Green curve – bad mounting
Bi2212 wires: transversal stress sensitivity

[Graph showing transversal stress sensitivity for Bi2212 wires with various conditions.]

Irreversible stress limit at ~ 75 MPa

No substantial improvement with OP or extra Mg

Results consistent with old tests on Rutherford cables

Graph showing stress vs. current ratio for different samples.

- Bi2212 OP@100 bar
- Bi2212 with extra AgMg OP@10 bar
- RRP Nb₃Sn, 0.85 mm

 force

Sample

Epoxy

Wire impregnated with epoxy applied stress uniformly distributed