FCC Week 2017 Berlin, 29 May – 2 June 2017

Baseline parameters of the 16 T dipoles for the FCC

Davide Tommasini

The content of the CDR shall be CREDIBLE

We would like large currents (> 20 kA) with large cables (60 strands) and large wires (>1.2 mm) for minimizing the inductance and the number of layers, the high field conductor with a low Cu/non-Cu (0.6:1) for making compact coils, assembly at 250 MPa or more for enabling «conventional» collaring, 0.2 or higher cable compaction for an efficient costheta design, a margin on the loadline of 5-10% for not entering into the «extremely expensive margin zone».

All above may be hopefully achieved by the time of the FCC through an appropriate R&D process, however the information we have available today forces us to be more (excessively?) prudent when setting a baseline for the CDR.

We will then adopt what we believe to be «reasonable» baseline parameters, keeping in mind that new opportunities may arise enabling more advantageous designs with respect to what we will establish for the CDR.

Reference

The baseline parameters are described in the EuroCirCol document «EuroCirCol-P1-WP5»

							TABLE I	
EuroCirCol 16T Digal	e design appisone: Imput Parzonators and. EuroCirCol-P1-WP5 Evaluation Criteria and Adv. 2017	EuroCirCol	16T Dipole design options: Input Parame Evaluation Criteria	ters and	EuroCirCol-P1-WPS Date: 04.04.2017	COMMON STARTING PA	RAMETERS FOR 1	THE MAGNET OPTIMIZATION
	Brant Agreement No: 654305	Converient motion				Dipole field at aperture	16	Т
				e elsans ana years com chinaractural.		Aperture diameter	50	mm
European Circular Energy-Frontier Collider Study Horizon 2020 Research and Innovation Framework Programme, Research and Innovation Action The European			The European Circular Energy-Proving Collider Stu	dy (ResoCuCel) proje	et has received funding	Reference radius	17	mm
NOTE		from the Desegnat Values I Kernes 2000 research and inserving programme under prim No 40205. Second-Calo logins is Juan 2013 and will man for 4 years. The information hands only reflect the views of its archive and the European Commission is not responsible for any use that may be made of a information.				Beam-to-beam distance	250	mm (larger if necessary)
			Delivery Slip			Outer diameter	800	mm
16T DIPOLE DESIGN OPTIONS: INPUT PARAMETERS AND EVALUATION			Name Partner Date		Cryostat outer diameter	1000	mm	
		Authored by	Y The WP5 contributors	All	16/06/24	Operating margin (nominal current is	>14	%
		Ealted by	F. Toral	CIEMAT	16/06/24	86% on loadline)		
Jooument identifier: Due date:	EuroCirCol-P1-WP3	1. INTRODU	TABLE OF CONTENTS 1 NUTRODUCTION 3 2 PROTE NARAMETERS 3 31 Example Americana 6 32 PRINTING SERIES 5 34 FUNCTION SERIES 6		Nominal current	<20000	А	
eport release date:	04.04.2017	2. EXPUT PA 21. DABLE				Working temperature	19	к
ork paokage:	WP5 High-field Magnet Design	1. EVALUAT				Cable insulation thickness	0.15	mm per conductor face
sd beneficiary: Journent status:	Short name as indicated in proposal/CA				•	Inter-layer insulation thickness	0.5	mm
main:	Engineering					Minimum ground insulation thickness	2	
words:	Superconducting magnets					X-section multipoles (geometric)	Δ ferr 10-4	units at reference radius
loctroot				Overall coil length	14.3	m		
his document summarizes the layer parameters and the evaluation criteria to be considered for the aploration of the different dasign options of the 16T dipole.			Peak temperature	350	K (quench at 105% of nor			
3 E\/A						Peak voltage to ground (circuit)	2500	V (quench at 105% of nor
J. EVA						Pools waite go to ground (magnet alana)	1200	V (guanah at 105% of nor

TABLE III CRITERIA FOR COMPARISON OF 16 T DIPOLE DESIGNS				
Magnet type	Cos- <i>θ</i>	Common coil	Block	Units
Area of bare conductors/aperture				mm ²
Area of insulated conductors/aperture				mm ²
Number of turns per aperture				
Outer iron voke radius				mm

	Working temperature	1.9	K			
	Cable insulation thickness	0.15	mm per conductor face			
	Inter-layer insulation thickness	0.5	mm			
	Minimum ground insulation thickness	2	mm			
	X-section multipoles (geometric)	A few 1	0 ⁻⁴ units at reference radius			
	Overall coil length	14.3	m			
	Peak temperature	350	K (quench at 105% of nominal current)			
	Peak voltage to ground (circuit)	2500	V (quench at 105% of nominal current)			
	Peak voltage to ground (magnet alone)	1200	V (quench at 105% of nominal current)			
	Peak inter-layer voltage	1000	V (quench at 105% of nominal current)			
	Peak inter-turn voltage	100	V (quench at 105% of nominal current)			
	Protection circuit delay	40	ms			
or th	or the exploration of 16T dipole design options					
Do X	$\mathbf{E}(\mathbf{C}\mathbf{D}_{\mathbf{a}})$					

Table II: Material Data for the exploration of 16T dipole design options								
Material	Stress limi	Stress limit (MPa, Von		E (GPa)		α		
	Mises)							
	293 K	4.2 K	293 K	4.2 K	293 K /4.2 K	293 K→4.2 K		
Coil	150	200	EX=30	EX=33	0.3	X=3.1E-3		
X: Radial/broad direction			EY=25	EY=27.5		Y=3.4E-3		
Y: Azimuthal/narrow direction			GXY=21	GXY=21				
Austenitic steel 316LN	350	1050	193	210	0.28	2.8E-3		
A1 7075	480	690	70	79	0.3	4.2E-3		
Ferromagnetic iron	230	720*	213	224	0.28	2.0E-3		
Pole (Ti6Al4V)	800	1650	115	126	0.3	1.7E-3		

* 380 MPa is the allowed limit for first principal stress at cold conditions.

Davide Tommasini

Baseline parameters of the 16 T dipoles for the FCC

Conductor

Baseline parameters of the 16 T dipoles for the FCC

Temperature

Operating temperature has been set to 1.9 K, following an analysis of cost and operational aspects for both magnets and cryogenic system.

Margin

Margin has been set with respect to the load line and is 14 % as for the LHC, as a result of an analysis of its impact on cost and complexity of the magnets

Baseline parameters of the 16 T dipoles for the FCC

Quench protection

We consider:

RRR=100

350 K maximum hot spot temperature @ 105% $\rm I_{nom}$

40 ms time delay (time from voltage tap signal to quench of the entire coil)

1.2 kV maximum voltage to ground (magnet contribution, excluding circuit)

Layout

Beam separation:

not a fixed constraint at this stage, with the aim of keeping the magnet size small to possibly fit in a HE-LHC. For the cosinetheta and the block a beam separation of 204 mm seems feasible.

Cold mass diameter (including shell):

We consider as reference to have enough iron to close the magnetic flux, with a tentative target to stay within 800 mm diameter or less.

In parallel, studies are being performed to explore more compact layouts once integrated in the vacuum vessel for a smooth fit in a HE-LHC.

Thank you for your attention

