EuroCircol - Cosine Theta

Design and protection of the EuroCirCol costheta bending dipole for the Future Circular Collider

Vittorio Marinozzi,

Giovanni Bellomo, Barbara Caiffi, Pasquale Fabbricatore, Stefania Farinon, Alessandro Maria Ricci, Massimo Sorbi

FCC week, 31/05/2017, Berlin
Outline:

1. Main design parameters
2. 2D Magnetic design
3. 3D coil ends
4. Protection
5. Conclusions
1.1 Main design parameters

<table>
<thead>
<tr>
<th>Constraints for the magnet design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore inner diameter</td>
<td>50 mm</td>
</tr>
<tr>
<td>Beam distance</td>
<td>204 mm</td>
</tr>
<tr>
<td>Bore nominal field</td>
<td>16 T</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>1.9 K</td>
</tr>
<tr>
<td>Operation on the load line</td>
<td>86 %</td>
</tr>
<tr>
<td>Maximum strand number per cable</td>
<td>40</td>
</tr>
<tr>
<td>Cable insulation thickness</td>
<td>0.15 mm</td>
</tr>
<tr>
<td>Cu/NCu</td>
<td>≥ 0.85</td>
</tr>
<tr>
<td>Field harmonics (geometric/saturation)</td>
<td>≤ 3/10 units</td>
</tr>
<tr>
<td>Peak temperature (105% of operating current)</td>
<td>≤ 350 K</td>
</tr>
<tr>
<td>Yoke outer radius</td>
<td>400 mm</td>
</tr>
</tbody>
</table>

- Magnetic design for a **double aperture** magnet
Why is beam distance \textbf{204 mm}?

- It is an \textbf{advantage} in terms of electromagnetic design
 - Bore field increase
 - More copper in conductors

- It is an advantage in terms of mechanics
 - More \textbf{symmetric}
 - More efficient
 - Details in the talk on mechanics (B. Caiffi, this morning)

- It is less far from hypothetic compatibility of the magnet with \textbf{HE-LHC} (194 mm)
Design strategy

- Design as **compact** as possible
 - Reduce amount of conductor
 - Reduce complexity of the magnet

- Maintain the feasibility of the protection
 - HST < 350 K

- Consider the possible construction issues
 - Wedges
 - Connections
2.1 2D Magnetic design – cross section

Grading

- **B peak**: 16.36 T

Number of turns:
- Layer 1: 13
- Layer 2: 19
- Layer 3: 29
- Layer 4: 39
- **Tot: 200/ap.**

Cable Specifications

<table>
<thead>
<tr>
<th></th>
<th>Cable 1 (inner)</th>
<th>Cable 2 (outer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand number</td>
<td>22</td>
<td>37</td>
</tr>
<tr>
<td>Strand diameter</td>
<td>1.1 mm</td>
<td>0.7 mm</td>
</tr>
<tr>
<td>Bare width</td>
<td>13.2 mm</td>
<td>13.65 mm</td>
</tr>
<tr>
<td>Bare inner thickness</td>
<td>1.892 mm</td>
<td>1.204 mm</td>
</tr>
<tr>
<td>Bare outer thickness</td>
<td>2.072 mm</td>
<td>1.3231 mm</td>
</tr>
<tr>
<td>Insulation</td>
<td>0.15 mm</td>
<td>0.15 mm</td>
</tr>
<tr>
<td>Keystone angle</td>
<td>0.5°</td>
<td>0.5°</td>
</tr>
<tr>
<td>Cu/NCu</td>
<td>0.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Operating current</td>
<td>11060 A</td>
<td>11060 A</td>
</tr>
<tr>
<td>Operating point on LL (1.9 K)</td>
<td>86 %</td>
<td>86 %</td>
</tr>
</tbody>
</table>

All the parameters are within the **design constraints**.
2.2 2D Magnetic design – wedges

- Minimum wedge thickness: 0.86 mm
- In LHC main dipole: 0.7 mm
- Number of wedges: 8
- In LHC main dipole: 4 (with one half of layers)

Design comparable with LHC main dipole
2.3 2D Magnetic design – iron yoke

- Outer radius: 375 mm
- Fringe field: 0.1 T at 410 mm

More details in the talk on the mechanics (B. Caiffi, this morning)
2.4 2D Magnetic design – inductance and energy

Double aperture

<table>
<thead>
<tr>
<th>Inductance @ I_{op}</th>
<th>Stored energy @ I_{op}</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.2 mH/m</td>
<td>2.6 MJ/m</td>
</tr>
</tbody>
</table>
2.5 2D Magnetic design – field quality

NORMAL RELATIVE MULTIPOLES @ 16 T:

<table>
<thead>
<tr>
<th>Multipole</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b 1</td>
<td>10000</td>
</tr>
<tr>
<td>b 2</td>
<td>-27.6</td>
</tr>
<tr>
<td>b 3</td>
<td>-0.41</td>
</tr>
<tr>
<td>b 4</td>
<td>-0.69</td>
</tr>
<tr>
<td>b 5</td>
<td>0.99</td>
</tr>
<tr>
<td>b 6</td>
<td>-0.01</td>
</tr>
<tr>
<td>b 7</td>
<td>1.72</td>
</tr>
<tr>
<td>b 8</td>
<td>-0.00</td>
</tr>
<tr>
<td>b 9</td>
<td>1.4</td>
</tr>
<tr>
<td>b 10</td>
<td>0.00</td>
</tr>
<tr>
<td>b 11</td>
<td>1.03</td>
</tr>
<tr>
<td>b 12</td>
<td>0.00</td>
</tr>
<tr>
<td>b 13</td>
<td>-0.18</td>
</tr>
<tr>
<td>b 14</td>
<td>0.00</td>
</tr>
<tr>
<td>b 15</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- b2 optimization **not yet performed**
- b3 saturation to be contained
- Persistent currents **not** considered

Acceptable field quality
2.6 2D Magnetic design – strand area

Conductor 1:
- 22 strands
- $\varnothing = 1.1$ mm
- Cu/NCu = 0.9
- $J_{cu} = 1116$ A/mm2
- Strand Area = 26.8 cm2/apert.
- Weight (FCC) = 3.05 ktons

Conductor 2
- 37 strands
- $\varnothing = 0.7$ mm
- Cu/NCu = 2.2
- $J_{cu} = 1129$ A/mm2
- Strand Area = 38.7 cm2/apert.
- Weight (FCC) = 4.41 ktons

High Cu content for protection reasons!

COND. AREA (double ap.): = 131 cm2

FCC dipoles extrapolation:

- COND. MASS: = 7.46 ktons

Data for FCC extrapolation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of dipole units</td>
<td>4578</td>
</tr>
<tr>
<td>Dipole length</td>
<td>14.3 m</td>
</tr>
<tr>
<td>Conductor density</td>
<td>8.7 kg/dm3</td>
</tr>
</tbody>
</table>
2.7 2D Magnetic design – alternatives

Same design can be proposed with 250 mm beam-beam distance, but with:

- More current
- Less copper
- More difficult to protect
- Extreme IL conductor

Same design can be proposed with iron pad, leading to advantages such as:

- Less current
- More copper
- Easier to protect
- “Standard” IL conductor

➢ To be understood if iron pad can sustain mechanical stresses
3.1 3D coil ends – layout

- Work in progress
- Based on a two double pan-cakes configuration
- Harmonic analysis performed
- Peak field to be computed yet

Designed by A.M. Ricci, INFN-Genova
3.2 3D coil ends – field quality (opposite connections)

NORMAL 3D INTEGRAL RELATIVE MULTIPOLES

\((10^{-4}) \)

\[
\begin{align*}
 b_1 &= 10000.00 \\
 b_2 &= -39.36 \\
 b_3 &= 2.59 \\
 b_7 &= 1.96 \\
 b_9 &= 1.39 \\
 \text{Others} &< 1
\end{align*}
\]
3.3 3D coil ends – field quality (opposite connections)
NORMAL 3D INTEGRAL
RELATIVE MULTIPOLES
\((10^{-4})\)

\(b_1 = 10000.00\)
\(b_2 = -42.85\)
\(b_3 = 5.45\)
\(b_5 = -2.76\)
\(b_7 = 2.08\)
\(b_9 = 1.49\)
Others < 1
4.1 Protection

- Main assumptions:
 - No energy extraction
 - Quench induced in the whole magnet 40 ms after initial quench start
 - Inductance dependence on the current
 - Material properties from MATPRO

- Result (105 % of I_{op}):
 - Hot spot temperature: ~ 340 K

More detailed quench protection studies in the Tiina Salmi talk (this morning)
5.1 Conclusions

The presented 16 T cosine-theta **accomplishes** the **EuroCirCol** design constraints

- Able to produce **16 T** bore field
- Margin on the load-line is **86%** at 1.9 K
- **Good** field quality
- Hot spot temperature **below 350 K** @ 105% I_{op}
- Possibility of using **iron pad** to improve the magnet is under exploration
- Possibility of adapting the magnet for **HE-LHC**?

We have began the design of 3D coil ends

- Two **double-pancakes** (well-known technology)
- **Acceptable** field quality
- Peak field to be computed