EuroCircol - Cosine Theta

Design and protection of the EuroCirCol costheta bending dipole for the Future Circular Collider

<u>Vittorio Marinozzi,</u>

Giovanni Bellomo, Barbara Caiffi, Pasquale Fabbricatore, Stefania Farinon, Alessandro Maria Ricci, Massimo Sorbi

Università degli Studi di Milano

FCC week, 31/05/2017, Berlin

Outline:

- 1. Main design parameters
- 2. 2D Magnetic design
- 3. 3D coil ends
- 4. Protection
- 5. Conclusions

1.1 Main design parameters

Constraints for the magnet design		
Bore inner diameter	50 mm	
Beam distance	204 mm	
Bore nominal field	16 T	
Operating temperature	1.9 K	
Operation on the load line	86 %	
Maximum strand number per cable	40	
Cable insulation thickness	0.15 mm	
Cu/NCu	≥ 0.85	
Field harmonics (geometric/saturation)	≤ 3/10 units	
Peak temperature (105 % of operating current)	≤ 350 K	
Yoke outer radius	400 mm	

> Magnetic design for a **<u>double aperture</u>** magnet

Why is beam distance **204 mm**?

> It is an **advantage** in terms of electromagnetic design

- Bore field increase
- More copper in conductors

➤ It is an advantage in terms of mechanics

- More **symmetric**
- More efficient
- Details in the talk on mechanics (B. Caiffi, this morning)

> It is lees far from hypothetic compatibility of the magnet with **HE-LHC** (194 mm)

Design strategy

Design as compact as possible

- Reduce amount of conductor
- Reduce complexity of the magnet

> Maintain the feasibility of the protection

- HST < 350 K
- Consider the possible construction issues
 - Wedges
 - Connections

2.1 2D Magnetic design – cross section

0 120 140 160 180

	Cable 1 (inner)	Cable 2 (outer)
Strand number	22	37
Strand diameter	1.1 mm	0.7 mm
Bare width	13.2 mm	13.65mm
Bare inner thickness	1.892 mm	1.204 mm
Bare outer thickness	2.072 mm	1.3231 mm
Insulation	0.15 mm	0.15 mm
Keystone angle	0.5°	0.5°
Cu/NCu	0.9	2.2
Operating current	11060 A	11060 A
Operating point on LL (1.9 K)	86 %	86 %

All the parameters are within the **design constraints**

Number of turns:

Layer 1: 13

Layer 2: 19

Layer 3: 29

Layer 4: 39

200

Tot: 200/ap.

2.2 2D Magnetic design – wedges

- Minimum wedge thickness: 0.86 mm
- In LHC main dipole: 0.7 mm

- Number of wedges: 8
- In LHC main dipole: 4 (with one half of layers)

Design comparable with LHC main dipole

0 120 140 160 180 200

2.3 2D Magnetic design – iron yoke

> More details in the talk on the mechanics (B. Caiffi, this morning)

(EuroCirCol

2.4 2D Magnetic design – inductance and energy

Inductance @ I _{op}	Stored energy @ I _{op}
40.2 mH/m	2.6 MJ/m

2.5 2D Magnetic design – field quality

NORMAL RELATIVE MULTIPOLES @ 16 T:			
b 1: 10000	b 2: -27.6	b 3: -0.41	
b 4: -0.69	b 5: 0.99	b 6: -0.01	
b 7: 1.72	b 8: -0.00	b 9: 1.4	
b10: 0.00	b11: 1.03	b12: 0.00	
b13: -0.18	b14: 0.00	b15: 0.01	

- b2 optimization <u>not yet performed</u>
- b3 saturation to be contained
- Persistent currents **not** considered

2.6 2D Magnetic design – strand area

Conductor 1:

- 22 strands
- Ø = 1.1 mm
- Cu/NCu = 0.9
- $J_{cu} = 1116 \text{ A/mm}^2$
- Strand Area = $26.8 \text{ cm}^2/\text{apert.}$
- Weight (FCC) = 3.05 ktons

COND. AREA (double ap.): = 131 cm²

FCC dipoles extrapolation:

COND. MASS: = 7.46 ktons

Conductor 2

- 37 strands
- $\emptyset = 0.7 \text{ mm}$
- Cu/NCu = 2.2
- $J_{cu} = 1129 \text{ A/mm}^2$
- Strand Area= 38.7 cm²/apert.
- Weight (FCC) = 4.41 ktons

Data for FCC extrapolation			
Number of dipole units	4578		
Dipole lenght	14.3 m		
Conductor density	8.7 kg/dm ³		

High Cu content

for protection

reasons!

2.7 2D Magnetic design – alternatives

Same design can be proposed with 250 mm beam-beam distance, but with:

- More current
- Less copper
- More difficult to protect
- Extreme IL conductor

Same design can be proposed with iron pad, leading to advantages such as:

- Less current
- More copper
- Easier to protect
- "Standard" IL conductor

> To be understood if iron pad can sustain mechanical stresses

3.1 3D coil ends – layout

Designed by A.M. Ricci, INFN-Genova

> Work in progress

- Based on a two double pan-cakes configuration
- Harmonic analysis performed
- Peak field to be computed yet

Vittorio Marinozzi, FCC week, 31/05/2017, Berlin

3.2 3D coil ends – field quality (opposite connections)

NORMAL 3D INTEGRAL **RELATIVE MULTIPOLES** (10^{-4}) $\underline{b}1 = 10000.00$ <u>b</u>2 = - 39.36 <u>b</u>3 = 2.59 <u>b7</u> = 1.96<u>b9</u> = 1.39 Others < 1

3.3 3D coil ends – field quality (opposite connections)

Vittorio Marinozzi, FCC week, 31/05/2017, Berlin

3.4 3D coil ends – field quality (connection side)

NORMAL 3D INTEGRAL RELATIVE MULTIPOLES (10^{-4})

 $\underline{b}1 = 10000.00$ $\underline{b}2 = -42.85$ $\underline{b}3 = 5.45$ $\underline{b}5 = -2.76$ $\underline{b}7 = 2.08$ $\underline{b}9 = 1.49$ Others < 1

4.1 Protection

- Main assumptions:
 - No energy extraction
 - Quench induced in the whole magnet **40 ms** after initial quench start
 - Inductance dependence on the current
 - Material properties from **MATPRO**

- > Result (**105** % of I_{op}):
 - Hot spot temperature: ~340 K

0 120 140 160 180 200

FCC hh ee he

17

5.1 Conclusions

> The presented 16 T cosine-theta **accomplishes** the **EuroCirCol** design constraints

- Able to produce **16 T** bore field
- Margin on the load-line is **86%** at 1.9 K
- **Good** field quality
- Hot spot temperature **below 350 K** @ 105% I_{op}
- Possibility of using **iron pad** to improve the magnet is under exploration
- Possibility of adapting the magnet for **HE-LHC?**

➤ We have began the design of 3D coil ends

- Two **double-pancakes** (well-known technology)
- Acceptable field quality
- Peak field to be computed

