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Inom / 105% Inom (A) 11470 / 12040 11240 / 11800 16400 / 17220

Ld,nom (mH/m) 17.57 18.4 21.1 (2-ap.)
m LF-cable HF-cable LF-cable HF-cable LF-cable

Cable w x t (bare) (mm) 13.05x 2.1 13.05x 1.25 13.2 x 1.950 13.65 x 1.264 19.2x2.2 12.0x 2.2

Number of strands 21 35 22 37 30 18

Strand diam. (mm) 1.155 0.705 1.1 0.7 1.2 1.2

Cu/SC 0.8 2.3 0.8 2.3 1.0 2.5

Cable ins. (mm) 0.15

RRR 100

Fil. twist (mm) 14

Je-fit From B. Bordini with T, =16 K, B_,, =29.38 T, a = 0.96, C, = 267845 A/mm?T




Quench protection integrated in magnet design

* After a quench, the magnet must absorp its stored energy
1. Quench detection
2. Switch off magnet current and activate quench protection (QP) system
* Quenching magnet by-passed with a diode

—>The QP system (heaters or CLIQ) quench the entire magnet = Rapid current discharge

——

Lmag(/) Rmag(t)

T(t) = Rmag(t)/Lmag I

 EuroCirCol WP5: Requirement for quench protection set as a design criterion

* If quench at 105% of /

* Fast-feedback quench simulation tools for magnet design adjustments

ome t€mperatures must be < 350 K and voltages < 1200 V
* Assuming 20 ms detection time, and QP system quenching the entire coil in 20 ms

» Significant impact on conductor quantity and technology:
* Prot. delay and T, > Minimum copper in cable = Coil size

* V__.~2 Maximum inductance / minimum current -> Cable size / number of turns




Temperature and voltage after the 20+20=40 ms delay

* Assuming that every coil-turn quenches 40 ms after initial quench

e Adiabatic computation with Coodi (Computation of current decay based on known protection delays)
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Temperature and voltage after a 20 + 0 ms delay

* Lower limit to temperatures that can be obtained with real protection system
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Design of quench heaters

* Heater technology similar than in LHC and HL-LHC:
* Cu-plated stainless steel strips:
e SS thickness 25 um, Cu thickness 10 um
* Insulation to coil: 75 um polyimide

* Powering with capacitor bank discharge:
e 1000V and 10 mF (LHC: 900 V and 7 mF)

* Analysis at 105% of /.,
Heat focused on

* The heaters must protect also at low current (1000 A) high-resistance
heating stations
Natural guench

propagation between
the heating stations

Heaters on HL-LHC
quadrupole MQXFS03
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Simulation software and assumptions

Calculation of heater delay

2-D model for one coil turn,
longitudinally

Heat generation in heater
and diffusion to cable

Calculation of coil temperatures

and voltages during quench

Adiabatic

Inputs:

Magnetic field (from ROXIE)
Turn mutual inductances
Heater delays (from Cohda)
Detection time (20 ms at
105% Inom)

Quench propagation (20 m/s
longit., and 10 ms turn-to-
turn at at 105%

(Quench propag. and det. time

scaled < /

mag2 )

Benchmark

e Simulation of MQXFS03 current decay:
- Conservative w.r.t. experiment

14000

---=Coodi, with all heaters
12000

—— Coodi, with 2 heaters failed

10000 o Measurement (with 2 heaters failed)

8000

6000

Coodi: 26.9 MIITs
Meas: 24.4 MIITs

Magnet current (A)

4000

2000

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

Thanks to S. Izquierdo Bermudez and H. Bajas for exp. data



Quench protection with heaters: Block

Location of heater strips:

| i

QH 3A

I| QH 2A

II QH 1A

Heater geometry and powering circuits:

Circuit  QH Strips Strip width HS / period Pon(0) Tre
(cm) (cm) (W/cm?) (ms)
HFU#1 1A 1.6 5/25 120 80
HFU#2 2A 1.6 5/25 120 80
HFU#3 1B 1.6 7140 150 72
HFU#4 2B 1.6 7140 150 72
HFU#5 (3A) || (3B) 2.3 7140 95 30
HFU#6  (4A) || (4B) 2.3 7140 95 30

Each strip is 14.3 m and always connected in series with identical strip

In heater power is assumed strip resistance + 1 Ohm margin for wires, etc.

Simulated delays in every turn:

(heater delay + 20 ms det. delay):

Prot.

delay (s)
0.072

0.060

0.047

|ll“l'l"rmmmlm||1||1M

=
o
w
(6)

E0.023

Result of guench simulation:

T = 350 K, V4= 960 V




Quench protection with heaters: Cos@

Location of heater strips:

Heater geometry and powering circuits:

Simulated delays in every turn:
(heater delay + 20 ms det. delay):

0.066

e

Prot. delay (s) 0.056

0.046

snaRRRRERRNRRRR

l

/ - —
— — =

[T

—— 0.025

Result of guench simulation:

Circuit  QH Strips Stripwidth  HS/period Poy(0)  tre
(cm) (W/cm?)  (ms)
HFU#1 1B | 1A||2A] 2B 1.0 85 38
HFU#2 2C| 3A| 3B || 3C 1.0 85 38
HFU#3 4A| 4B 1.4 123 45
HFU#4 4C| 4D 1.4 123 45

Mmax

= 340K, V,,4=1010 V

Each strip is 14.3 m and always connected in series with identical strip
In heater power is assumed strip resistance + 1 Ohm margin for wires, etc.
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Quench protection with heaters: Common coll

Location of heater strips:

4A

3A

1A

0A

1B

|!‘0ll|l|]‘[[l|lll
|

1C

Heater geometry and powering circuits:

Simulated delays in every turn:
(heater delay + 20 ms det. delay):

Prot. delay (s)

Circuit QH Strips Strip width HS / period Pon(0) Tre
(cm) (cm) (W/cm?) (ms)
HFU#1 4A | 4B 1.75 6/40 138 34
HFU#2 4C || 4D 1.75 6/40 138 34
HFU#3 3A| 3B 1.75 6/40 138 34
HFU#4 3C||3D 1.75 6/40 138 34
HFU#5 2A| 2B 1.75 6/40 138 34
HFU#6 2C || 2D 1.75 6/40 138 34
HFU#7 1A || 1B || 1C || 1D 1.4 4125 87 26
HFU#8 0A] 0B || 0A-, || OB, 1.5 4125 87 26

0.065

o
o
0)]
(&)

-0.035 “ l

Result of guench simulation:

1170V

Thax = 390K, Vi 4=

11



Comparison of magnets with heater based protection

Hotspot temperature (K) (limit 350 K)
Voltage to ground (V) (limit 1200 V)
Energy of QH system (kJ) / 1 aperture

: 010 17

40

* All heaters quench also at 1000 A
* At/ ., hotspot temperature and voltage are smaller by ~15-25 K, and ~100 V

* Work in progress: Further optimizations are possible
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Some sensitivity analyses for the Cos heater design

Heater design:

Reference at 105 % /__:

nom:*

* Increase heater polyimide insulation from 0.075 mm to 0.1 mm T ..=340K V__=1010V
2> T, *14K, V. +90V

max

* Remove inner layer heater (layer-to-layer propag. ~20 ms):
> T, ¥8K V _ -110V

max

Material parameters and model assumptions:

* Heater delays uncertainty (cable average field instead of peak)

e Material properties (MATPRO instead of NIST)

* Propagation velocities (reduction of 50%)

2> T +<20K V_ . +<300V

max

->The design is relatively stable

=20 K could be a reasonable margin in later analysis and failure scenarios

13



Protection with CLIO — Coupling-Loss Induced Quench

* CLIQ is a new technology for the protection of
superconducting magnets. The core component is the
capacitor bank that generates:

* An alternated transport current in the magnet
e A variable magnetic field in the coils

* High inter-filament and inter-strand coupling
losses

* Heat on the superconductor

* Quick spread of the normal zone after a quench

<€
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Protection of the Block with CLIO

* Very promising results with a Multi-CLIQ system (2 x 1200 V/20 mF)

Details in the poster by M. Prioli

Vgnd (V)
1100
Lyg Lis Lyg Lsy Loyz LigyoLiias Lisin
'_‘mm,+ >
Quench simulation with LEDET!+PSPICE2 10
Truox = 300 K, V4= 1100 V
-1100

'E. Ravaioli, Cryogenics, 2016.

2|, Cortes Garcia et al., submitted to IEEE JIMMCT, 2017 15



Protection with heaters and CLIO

4
P 1k, 10mF
CLio]

e CLIQ for fast quenching at high current,

* QH for voltage control and protection at low
current

* Advantages when applied to Block:

1. Allows using a smaller CLIQ unit

2. No interlayer leads for CLIQ

Peak deposited loss [W/cmq’ ]

3. Heaters only on outer surfaces

4. Less total energy in the QP-system

Circuit  QH Strips Strip width  HS/ period ~ Po,(0) Tre
(cm) (cm) (W/cm?)  (ms)

HFU#L  (1A+4A)| (1A+4A)  1A:16, 1A:525 1A:130 38
4A:23  AAITIH0  4A:63

HFU#2  (1B+4B)| (1B+4B)  1B: 1., 7140 1B:150 36
4B: 2.3 4B: 71
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Protection with heaters and CLIO e
+_N_ 1 kV, 10 mF

Simulation with CoHDA and LEDET

“g
T, =340K, Vgnd =1190V -
A check: Assume that CLIQ decreases the g
heater delays by 20% and increases =
longitudinal propagation velocity by 20%: &
Thax =340 Kand V, 4= 1160 V
Circuit ~ QH Strips Strip width  HS/ period ~ Po,(0) Tre
(cm) (cm) (W/cm?)  (ms)

HFU#L  (1A+4A)| (1A+4A)  1A:16, 1A:525 1A:130 38
4A:23  AAITIH0  4A:63

HFU#2  (1B+4B)| (1B+4B)  1B: 1., 7140 1B:150 36
4B: 2.3 4B: 71

17



Comparison of different methods applied to Block

Hotspot temperature (K) (limit 350 K) W

Voltage to ground (V) (limit 1200 V) 1100 1200
Energy of QH system (kJ) / 1 aperture 60 (HFU) 29 (CLIQ) 5 (CLIQ) + 20
(HFU)%?

* Work in progress: Further optimization obtainable for all methods

* Highly efficient CLIQ:
—Increases the safety margin in protection,
OR can be used to reduce the requirement for copper in the magnet design

18



Conclusions

 Quench protection integrated in the 16 T dipole magnets design from beginning
* At 105% of /., assumed protection efficiency 40 ms, and required T, _ < 350K, V__ <1200V

¥

* Two protection systems available:
* Quench heaters: T, 340-350Kand V__,
e CLIQ: T, 300K (demonstrated for Block)

* Quench heaters + CLIQ: Reduction of QP system energy (demonstrated for Block)

1000 - 1200V

1. Analyze CLIQ and CLIQ+QH for all magnets (incl. sensitivity analysis)

3. Software calibration with experimental data 2>

* Road map to further optimization of quench protection and magnet design: ¥
4. Iterate magnet design based on the updated protection efficiency and marginon T, _, %

3

19

— Possible reduction in magnet size

* In parallel: Analyze thermal stresses and protection integration with the circuit design



Posters about quench protection in EuroCirCol WP5

M. Prioli et al.: Voltage reduction, analysis of circuits J. Zhao et al.: Mechanical analysis during a quench

Strategies to reduce the voltage to ground Mechanical behavior of a 16 T FCC dipole magnet
in the FCC main dipole circuits during a quench
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