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Outline

• 16 T dipole design options in EuroCirCol WP5

• Integration of quench protection into the magnet design 

• Protection with quench heaters

• Protection with CLIQ (Block)

• Protection with and CLIQ+heaters (Block)

• Conclusions
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Magnet designs
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Magnet Block, V20ar Cosθ, 22b-37-optd7f8 CommonCoil, vh12_2ac6

Inom / 105% Inom (A) 11470 / 12040 11240 / 11800 16400 / 17220

Ld,nom (mH/m) 17.57 18.4 21.1 (2-ap.)

Cable HF-cable LF-cable HF-cable LF-cable HF-cable LF-cable

Cable w x t (bare) (mm) 13.05 x 2.1 13.05 x 1.25 13.2 x 1.950 13.65 x 1.264 19.2 x 2.2 12.0 x 2.2

Number of strands 21 35 22 37 30 18

Strand diam. (mm) 1.155 0.705 1.1 0.7 1.2 1.2

Cu/SC 0.8 2.3 0.8 2.3 1.0 2.5

Cable ins. (mm) 0.15

RRR 100

Fil. twist (mm) 14

Jc-fit From B. Bordini with Tc0 = 16 K, Bc20 = 29.38 T, α = 0.96, C0 = 267845 A/mm2T

All 14.3 long
Cosθ and Block 1-ap. versions



Quench protection integrated in magnet design

• After a quench, the magnet must absorp its stored energy

1. Quench detection

2. Switch off magnet current and activate quench protection (QP) system

• Quenching magnet by-passed with a diode

The QP system (heaters or CLIQ) quench the entire magnet  Rapid current discharge

• EuroCirCol WP5: Requirement for quench protection set as a design criterion

• If quench at 105% of Inom,  temperatures must be < 350 K and voltages < 1200 V

• Assuming 20 ms detection time, and QP system quenching the entire coil in 20 ms

• Fast-feedback quench simulation tools for magnet design adjustments

• Significant impact on conductor quantity and technology:

• Prot. delay and TmaxMinimum copper in cable Coil size

• VmaxMaximum inductance / minimum current Cable size / number of turns
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Temperature and voltage after the 20+20=40 ms delay
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• Assuming that every coil-turn quenches 40 ms after initial quench

• Adiabatic computation with Coodi (Computation of current decay based on known protection delays)

359 K

830 V

356 K

1150 V

341 K

790 V

Cosθ: 22b-37-optd7f8 Block: V20ar Common-coil: Vh12_2ac6



Temperature and voltage after a 20 + 0 ms delay

• Lower limit to temperatures that can be obtained with real protection system
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Block: V20ar Common-coil: Vh12_2ac6Cosθ: 22b-37-optd7f8

260 K

266 K

273 K



Design of quench heaters

• Heater technology similar than in LHC and HL-LHC:

• Cu-plated stainless steel strips:

• SS thickness 25 µm, Cu thickness 10 µm

• Insulation to coil: 75 µm polyimide

• Powering with capacitor bank discharge: 

• 1000 V and 10 mF (LHC: 900 V and 7 mF)

• Analysis at 105% of Inom

• The heaters must protect also at low current (1000 A)

7

Heaters on HL-LHC 
quadrupole MQXFS03

Heat focused on 
high-resistance
heating stations

Natural quench
propagation between
the heating stations



Simulation software and assumptions
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Coodi

• Calculation of coil temperatures
and voltages during quench

• Adiabatic

• Inputs:
• Magnetic field (from ROXIE)
• Turn mutual inductances
• Heater delays (from Cohda)
• Detection time (20 ms at 

105% Inom)
• Quench propagation (20 m/s 

longit., and 10 ms turn-to-
turn at at 105%

• (Quench propag. and det. time
scaled ∝ Imag

2 )

• Calculation of heater delay

• 2-D model for one coil turn, 
longitudinally

• Heat generation in heater
and diffusion to cable

CoHDA Benchmark

• Simulation of MQXFS03 current decay:
 Conservative w.r.t. experiment

0

2000

4000

6000

8000

10000

12000

14000

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

M
ag

n
et

 c
u

rr
en

t 
(A

)

Time (s)

Coodi, with all heaters

Coodi, with 2 heaters failed

Measurement (with 2 heaters failed)

Coodi: 26.9 MIITs
Meas: 24.4 MIITs

Thanks to S. Izquierdo Bermudez and H. Bajas for exp. data



Quench protection with heaters: Block
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Each strip is 14.3 m and always connected in series with identical strip 
In heater power is assumed strip resistance + 1 Ohm margin for wires, etc.

Circuit QH Strips Strip width

(cm)

HS / period 

(cm)

PQH(0) 

(W/cm2)

τRC

(ms)

HFU#1 1A 1.6 5 / 25 120 80

HFU#2 2A 1.6 5 / 25 120 80

HFU#3 1B 1.6 7 / 40 150 72

HFU#4 2B 1.6 7 / 40 150 72

HFU#5 (3A) || (3B) 2.3 7 / 40 95 30

HFU#6 (4A) || (4B) 2.3 7 / 40 95 30

Tmax = 350 K, Vgnd = 960 V

Location of heater strips:

Heater geometry and powering circuits: 

Simulated delays in every turn:
(heater delay + 20 ms det. delay):

Result of quench simulation:



Quench protection with heaters: Cosθ
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Circuit QH Strips Strip width 

(cm)

HS / period 

(cm)

PQH(0) 

(W/cm2)

τRC

(ms)

HFU#1 1B || 1A || 2A || 2B 1.0 3 / 15 85 38

HFU#2 2C || 3A || 3B || 3C 1.0 7 / 35 85 38

HFU#3 4A || 4B 1.4 7 / 40 123 45

HFU#4 4C || 4D 1.4 7 / 40 123 45

Tmax = 340 K, Vgnd = 1010 V

Each strip is 14.3 m and always connected in series with identical strip 
In heater power is assumed strip resistance + 1 Ohm margin for wires, etc.

Location of heater strips:

Heater geometry and powering circuits: 

Simulated delays in every turn:
(heater delay + 20 ms det. delay):

Result of quench simulation:



Quench protection with heaters: Common coil
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Circuit QH Strips Strip width 

(cm)

HS / period 

(cm)

PQH(0) 

(W/cm2)

τRC

(ms)

HFU#1 4A || 4B 1.75 6 / 40 138 34

HFU#2 4C || 4D 1.75 6 / 40 138 34

HFU#3 3A || 3B 1.75 6 / 40 138 34

HFU#4 3C || 3D 1.75 6 / 40 138 34

HFU#5 2A || 2B 1.75 6 / 40 138 34

HFU#6 2C || 2D 1.75 6 / 40 138 34

HFU#7 1A || 1B || 1C || 1D 1.4 4 / 25 87 26

HFU#8 0A || 0B || 0AC2 || 0BC2 1.5 4 / 25 87 26

Tmax = 350 K, Vgnd = 1170 V

Location of heater strips:

Heater geometry and powering circuits: 

Simulated delays in every turn:
(heater delay + 20 ms det. delay):

Result of quench simulation:



Comparison of magnets with heater based protection

Block Cosθ Common-coil

Hotspot temperature (K) (limit 350 K) 353 341 350

Voltage to ground (V) (limit 1200 V) 960 1010 1170

Energy of QH system (kJ) / 1 aperture 60 40 35
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• All heaters quench also at 1000 A

• At Inom hotspot temperature and voltage are smaller by ~15-25 K, and ~100 V

• Work in progress: Further optimizations are possible



Some sensitivity analyses for the Cosθ heater design

Heater design:

• Increase heater polyimide insulation from 0.075 mm to 0.1 mm

 Tmax +14 K, Vmax +90 V

• Remove inner layer heater (layer-to-layer propag. ~20 ms):

 Tmax +8 K, Vmax -110 V

Material parameters and model assumptions:

• Heater delays uncertainty (cable average field instead of peak)

• Material properties (MATPRO instead of NIST)

• Propagation velocities (reduction of 50%)

 Tmax + < 20 K, Vmax + < 300 V

The design is relatively stable

20 K could be a reasonable margin in later analysis and failure scenarios
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Reference at 105 % Inom: 
Tmax = 340 K, Vmax = 1010 V



Protection with CLIQ – Coupling-Loss Induced Quench
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• CLIQ is a new technology for the protection of
superconducting magnets. The core component is the
capacitor bank that generates:

• An alternated transport current in the magnet

• A variable magnetic field in the coils 

• High inter-filament and inter-strand coupling 
losses

• Heat on the superconductor

• Quick spread of the normal zone after a quench



Protection of the Block with CLIQ

• Very promising results with a Multi-CLIQ system (2 x 1200 V/20 mF) 
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Details in the poster by M. Prioli

Quench simulation with LEDET1+PSPICE2

Vgnd (V)

1E. Ravaioli, Cryogenics, 2016.
2I. Cortes Garcia et al., submitted to IEEE JMMCT, 2017

Tmax = 300 K, Vgnd = 1100 V



Protection with heaters and CLIQ

• CLIQ for fast quenching at high current,

• QH for voltage control and protection at low
current

• Advantages when applied to Block: 

1. Allows using a smaller CLIQ unit

2. No interlayer leads for CLIQ

3. Heaters only on outer surfaces

4. Less total energy in the QP-system
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L2

L1

L3 1B1A

4B4A

Circuit QH Strips Strip width 

(cm)

HS/ period 

(cm)

PQH(0) 

(W/cm2)

τRC

(ms)

HFU#1 (1A+4A) || (1A+4A) 1A: 1.6, 

4A: 2.3

1A: 5/25

4A: 7/40

1A: 130

4A: 63

38

HFU#2 (1B+4B) || (1B+4B) 1B: 1.6, 

4B: 2.3

7/40 1B: 150

4B: 71

36

L4

1 kV, 10 mF



Protection with heaters and CLIQ
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Simulation with CoHDA and LEDET

Circuit QH Strips Strip width 

(cm)

HS/ period 

(cm)

PQH(0) 

(W/cm2)

τRC

(ms)

HFU#1 (1A+4A) || (1A+4A) 1A: 1.6, 

4A: 2.3

1A: 5/25

4A: 7/40

1A: 130

4A: 63

38

HFU#2 (1B+4B) || (1B+4B) 1B: 1.6, 

4B: 2.3

7/40 1B: 150

4B: 71

36

A check: Assume that CLIQ decreases the 
heater delays by 20% and increases
longitudinal propagation velocity by 20%: 
Tmax = 340 K and Vgnd = 1160 V

1 kV, 10 mF

Tmax = 340 K, Vgnd = 1190 V

L2

L1

L3 1B1A

4B4A

L4



Comparison of different methods applied to Block

• Work in progress: Further optimization obtainable for all methods

• Highly efficient CLIQ:

Increases the safety margin in protection,

OR can be used to reduce the requirement for copper in the magnet design
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QH only CLIQ only CLIQ + QH

Hotspot temperature (K) (limit 350 K) 353 300 343

Voltage to ground (V) (limit 1200 V) 960 1100 1200

Energy of QH system (kJ) / 1 aperture 60 (HFU) 29 (CLIQ) 5 (CLIQ) + 20
(HFU)



Conclusions

• Quench protection integrated in the 16 T dipole magnets design from beginning

• At 105% of Inom assumed protection efficiency 40 ms, and required Tmax < 350 K, Vmax < 1200 V

• Two protection systems available:

• Quench heaters: Tmax 340 – 350 K and Vmax 1000 – 1200 V

• CLIQ: Tmax 300 K (demonstrated for Block)

• Quench heaters + CLIQ: Reduction of QP system energy (demonstrated for Block)

• Road map to further optimization of quench protection and magnet design:

1. Analyze CLIQ and CLIQ+QH for all magnets (incl. sensitivity analysis)

2. Update the protection efficiency vs. type of magnet and protection

3. Software calibration with experimental data  Quantify the needed margin

4. Iterate magnet design based on the updated protection efficiency and margin on Tmax

 Possible reduction in magnet size

• In parallel: Analyze thermal stresses and protection integration with the circuit design
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Posters about quench protection in EuroCirCol WP5
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J. Zhao et al.: Mechanical analysis during a quenchM. Prioli et al.: Voltage reduction, analysis of circuits


