Design of ERMC-RMM

FCC Week 2017 31/05/2017

E. Rochepault, S. Izquierdo Bermudez, R. Ortwein, J.C. Perez With appreciable help from N. Bourcey, P. Ferracin, J. Osieleniec, D. Schoerling, D. Tommasini CERN-MSC-MDT

Outline

- 1. 1st 3D magnetic optimization
- 2. Choice of iron lengths
- 3. Impact on the 3D mechanical design
- 4. 2nd 3D magnetic optimization
- 5. Design of the axial support
- 6. 3D Mechanical analysis

- 1st Objectives:
 - Additional operational margin in the coil ends → Peak field 1 T lower than in the straight section (ΔBpeak = 1 T)
 - Minimize the conductor length

Process:

- Choice of iron lengths based on requirements
- Parametric studies without iron
- 1st order optimization without iron
- 2nd order optimization with iron
- Optimized for RMM, checked for ERMC

z [mm]

Introducing spacers:

- a. Varying # turns in inner blocks
- b. Varying spacer length $\rightarrow \Delta Bpeak = 0.2T$
- c. Introducing a 2nd spacer
- d. Shifting layers
- Shifting 1+2 is the most efficient
- similar effect to adding an additional spacer
- Less risks during assembly and operation

B [T]

14

- d. Shifting layers 1+2: decreases Bpeak, but increases the length
- e. Moving block 6 in decreases Bpeak while decreasing the length
- f. Moving blocks 1+2 out is more efficient than moving blocks 4+5
- **Optimized solution** [1]
- No end-spacer → simpler manufacturing
- Shifted layer → minimum peak field

$\Delta Bpeak = 0.7T, + 28 m$ 6 5 $\Delta Bpeak = 1.1T, + 18 m$ 6 2 5 $\Delta Bpeak = 1.1T, + 12 m$

Axial mechanical support

- Structure designed for RMM, up to 18 T ultimate field
 - \rightarrow up to 3 MN of axial Lorentz forces
- Tie rods + endplate
 - used in R&D magnets at CERN/MDT
 - Can apply large pre-load force if needed
 - Allow tuning the pre-stress

Goals:

- Limit the conductor motion during powering
- → Minimum pole-to-coil tension and detachment
- Coil stress < 150/200 MPa at Pre-load/Operation
- Structural components below yield stress

Impact on 3D mechanical design

- Shifted layer optimum from the magnetic point of view
- Drawback: un-balanced forces in layer 3
- → Non-manageable tension and gap with the pole

Pressure [MPa]

CERN

Magnet lengths

Parameter	Unit	ERMC	RMM	
Straight section	mm	740	740	
Coil unit length	m	184	185	
Magnet unit length	m	384	567	
Length of magnetic pole and pad	mm	350	350	B, [T]
Length of magnetic yoke	mm	500	500	
Flat top length (at 99 %)	mm	230	233	
Magnetic length	mm	908	967	

Central field

CERN

5/31/2017

E. Rochepault - FCC Week 2017

Design of the axial support

- End-shoe and spacer material
 - G11 [1]:
 - Mechanically softer
 - no need for electrical insulation
 - Stainless steel → preferred solution [2]:
 - Mechanically stiffer
 - maintains better the pre-load
- Impact of contacts:
 - 20% of pre-load force reaches the pole tip
 - Remainder goes in friction and bonded contacts

Coil bonded, 0.2 friction elsewhere

Coil bonded, 0 friction elsewhere

Design of the axial support

- Rod material: Al Vs. Stainless steel
 - Higher yield stress
 - Higher thermal contraction
 - \rightarrow higher pre-stress due to cool-down
 - Enough margin for both options
- Increasing rod diameter:
 - Higher force during pre-load
 - \rightarrow less bending of the end-plate
 - Higher pre-stress due to cool-down
- End-plate material: Nitronic 40 Vs. Stainless steel
 - Higher yield stress
 - Enough margin to consider both options

Design of the axial support

Goals:

- Keep stress below yield limit
- Allow extraction of the leads on the Lead End
- Allow applying the pre-stress on the Return End

d. Removing un-

necessary material

3D Mechanical analysis

- Structure re-optimized using 2nd magnetic design [2]
- Coil ends can accept some motion e.g. RMC [3]: 16 T peak field, 95% SS, 25 MPa tension, 25 µm gap
- Axial pre-load can be tuned to reduce coil end motion •

Rod Pre-load Fz Rod C		Rod Cool	-Down Fz	16 T Operation			18 T operation		
[% 16 T Fz]	[% 18 T Fz]	[% 16 T Fz]	[% 18 T Fz]	[% Fz]	Tension [MPa]	Gap [µm]	[% Fz]	Tension [MPa]	Gap [µm]
14	11	76	56	78	64	106	59	90	150
27	20	100	75	103	56	94	77	80	133
72	53	139	104	143	46	76	107	66	110
102	76	169	126	173	25	42	129	45	75
135	100	208	155	209	-4	0	156	8	13

EFACET=1

AVRES=Mat

DMX =1.246

-70 -50

-30

-10

10

30

50

70

90

110

Contact pressure [MPa] (bonded)

Pre-load = 53% of 18 T Fz After Cool-Down = 104%

Contact gap [mm] (separation)

5/31/2017

3D Mechanical analysis

Von Mises Stress [MPa]: → Peak stress in the straight section → <150 at Pre-load, <200 Cool-Down/Operation

Equivalent (Von Mises) Stress [MPa]

5/31/2017

Summary: Baseline design

- 2D: representative of a block-coil FCC design
 - 50 mm bore, 16 T
 - 10/19% margin at 4.2/1.9 K
 - 3 double-layer pancakes
 - Bladder & Keys pre-load
- 3D: racetracks for simplicity of fabrication
 - Aligned coil-ends with 1 spacer/layer
 - 0.5 T lower Bpeak in the ends → magnetic margin
 - Ends optimized to limit the coil motion -> «mechanical» margin
- Room for R&D
 - Different materials considered for axial support
 - Possibility to tune the pre-load

Thank you for your attention!

Backup slides

2d Mechanical design

Goals:

- Limit the conductor motion during powering → Minimum pole-to-coil tension and detachment
- Coil stress < 200 MPa at all steps
- Use the same structure for ERMC and RMM
- Structural components below yield stress
- Structure must withstand 18 T ultimate field

Pole-Coil contact pressure [Pa]

Bladder&Keys Shell-based support structure

 → Marginal tension
 → Overall positive contact pressure

[R. Ortwein]

2d Mechanical design

Von Mises stress [Pa] 27.5/33 GPa modulus at cold

5/31/2017

Introducing spacers:

- a. Varying # turns in inner blocks \rightarrow N1 = 2, N2 = N3 = 8
- b. Varying spacer length \rightarrow 40 mm

5/31/2017

|B| [T]

c. Introducing a 2nd spacer

d. Shifting layers

- \rightarrow Shifting layers:
- Shifting 1+2 is the most efficient
- similar effect to adding an additional spacer
- Less risks during assembly and operation

d. Shifting layers 1+2 decreases Bpeak, but increases the length

e. Moving block 6 in decreases Bpeak while decreasing the length

f. Moving blocks 1+2 out is more efficient than moving blocks 4+5

5/31/2017

Trade-off with the magnet length

- Central iron parts \rightarrow +2T central field
- Magnetic requirements:
 - "Flat top" > 200 mm
 - \rightarrow iron at least 300 mm
 - Lower peak field in ends and layer jump
 - \rightarrow Coil ends outside iron
- Limit in cable length: 600 m
 - \rightarrow Limit in coil length

L _{SS} -L _{iron} [mm]	L _{Coil} [mm]	Flat top [mm]	L _{Cond} [m]	Bpeak SS-ends [T]
0	624	140	318	-0.4
135	990	320	495	-0.1
215	1040	394	538	0.1
215	1200	542	622	0.1

Peak field in the ends

→ Shifted case optimized for peak field (1T difference)

→ 60 mm spacers is a compromise between magnetics (still 0.5T difference) and mechanics (balanced forces)

Lorentz forces in the ends

- \rightarrow Total force equivalent in all designs
- → Shifted case unbalanced

3D Mechanical design

Layer	Endshoe 4.2 K	Coil,end 4.2 K	Pole 4.2 K	EM forces 18 T		Contact 18 T	Gap 18 T
	kN	kN	kN	kN	%	MPa	μm
1	196	70	43	158	27	-40	130
2	230	39	51	168	30	7	57
3	340	133	32	362	9	-127	173
Total	767	242	126	688	22		

Goals: limit the conductor motion during powering

- Minimum pole to coil tension
- Minimum pole to coil detachment

AVRES=Mat

=-.172907

.134483

-.076848-.057636-.038424 -.019212

-110

-90 -70 -50

-30 -10

10

30

Inner contacts

CERN

Impact of rod material (shifted)

- Stainless steel rod:
 - Limited by yield stress at room temperature
 - Low pre-stress due to cool-down
 - Increases bending (and peak stress) in the end-plate
- Al rod:
 - Higher yield stress
 - High pre-stress due to cool-down

•

Impact of rod diameter (60 mm spacers)

- 64 mm diameter:
 - Higher force during pre-load \rightarrow less bending of the end-plate
 - Higher pre-stress due to cool-down
 - Stainless steel rod can also be used without yielding
 - Stainless steel end-plate can also be used without yielding

Impact of stainless steel rod (shifted)

	Total force [MN]	Cool-Down [µm]		18 T	[µm]	Difference [µm]	
		in	out	in	out	in	out
AI	2.9	-904	-2091	-743	-2012	+161	+79
SS	3.2	-922	-2195	-766	-2126	+156	+69

→ Minor impact

Impact of a bigger rod (60 mm spacers)

64 mm

Alternative 1: «force management»

Layer	Endshoe 4.2 K	Coil,end 4.2 K	Pole 4.2 K	EM forces 18 T		Contact 18 T	Gap 18 T			
	kN	kN	kN	kN %		MPa	μm			
V6i – nominal case										
1	196	70	43	158	27	-40	130			
2	230	39	51	168	30	7	57			
3	340	133	32	362	9	-127	173			
Total	767	242	126	688	22					
V6v – sliding endshoe3*, pushing on layer 3 only										
1	89	139	78	158	49	-10				
2	86	147	79	168	47	30				
3	336	212	47	362	13	-108				
Total	511	498	204	688	36					

- 180 mm thick plate
- Max. pre-load load (limited by yielding in the plate)
- Stainless-steel end shoes
- Pre-load applied only on layer 3
- Endshoe 3 allowed to slide on layer 2
- → No major improvement

