

Overview of the US magnet development programme

Soren Prestemon

Director US Magnet Development Program Lawrence Berkeley National Laboratory

- Context for high field accelerator magnet R&D
 - $\circ~$ P5 and the Accelerator R&D Subpanel recommendations
- The US Magnet Development Program
 - How we are structured
- Technical status of each area
 - Progress and current status
 - $\circ~$ Corresponding roadmap within the MDP plan
- Summary

The US HEP Superconducting Magnet Programs are now integrated into the US Magnet Development Program

10

10

13

16

18

20

20

24

24

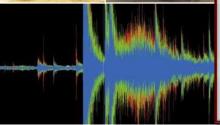
27

30

30

32

33


34

The U.S. Magnet Development Program Plan

Program (MDP) Goals: GOAL 1: Explore the performance limits of

Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.

Table of Contents

Executive Summary
Introduction
1. The U.S. Magnet Development Program
2. The MDP Program and Scope of Work
2.1 The MDP Directions and Deliverables to Achieve the MDP Goals
2.2 High Field Dipole Development to Explore the Limits of Nb ₃ Sn
2.3 High Field Magnet Development to Explore the Limits of HTS
2.4 Magnet Science: Developing Underpinning Technologies
2.5 Superconducting Materials — Conductor Procurement and R&D (CPRD)
3. Schedule and Milestones
3.1 Schedule and Milestones
4. The MDP Management Plan
4.1 The MDP Leadership and Management Structure
References
Appendices
Appendix A: Motivation for the MDP
Appendix B: HEPAP Recommendations
Appendix C: Acronyms and Abbreviations
Appendix D: DOE MDP Creation Guidance Memo

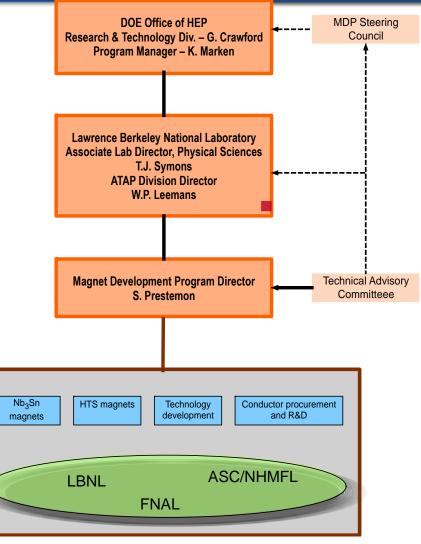
ptual design studies and critical path ergy proton-proton colliders.

ip role in superconducting magnet
 dual goals of increasing performance

U.S. high-field magnet R&D collaboration udies for a very high-energy proton-proton improvement in cost-performance.

rsue the development of Nb₃Sn magnets oton-proton collider.

cecute a high-temperature superdevelopment plan with appropriate y of cost-effective accelerator magnets


and manufacturing engineering h decrease the touch labor and increase superconducting accelerator magnets. ease funding for superconducting

port aggressive development of new

The management structure of the MDP is clearly defined and the program is fully functioning

Technical Advisory Committee Andrew Lankford, UC Irvine – *Chair* Davide Tommasini, CERN Akira Yamamoto, KEK Joe Minervini, MIT Giorgio Apollinari, FNAL (LARP/Hi-Lumi) Mark Palmer, BNL

MDP Management Group S. Prestemon, LBNL G. Velev, FNAL (*Deputy*) L. Cooley, FNAL S. Gourlay, LBNL D. Larbalestier, FSU A. Zlobin, FNAL

Initial technical roles of participants matches strengths and interests

- FSU
 - Conductor R&D

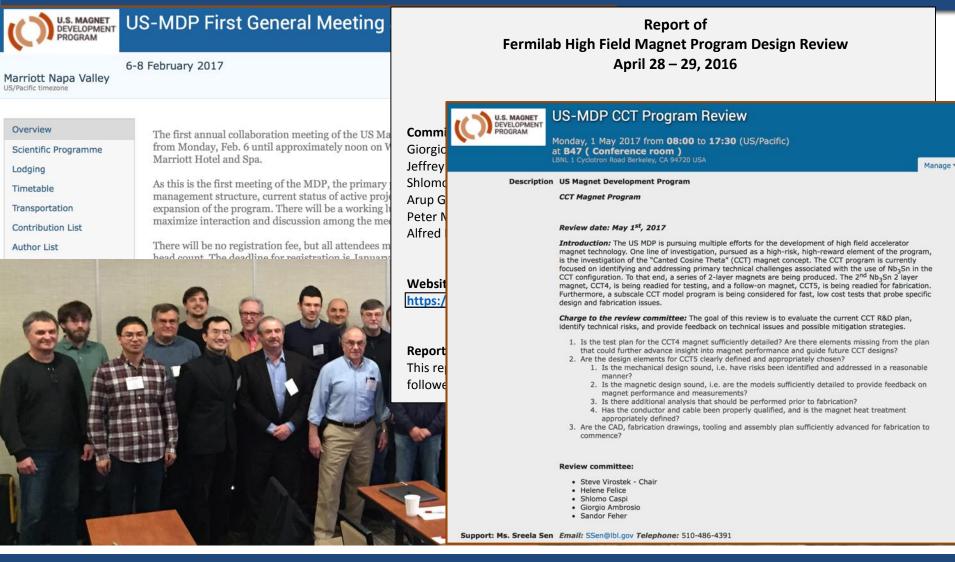
See Tuesday presentations from *P. Lee and D. Larbalestier*

- Leverage Bi-2212 and REBCO R&D Program
- Shared infrastructure overpressure furnace for sub-scale coils
- FNAL
 - $\circ~$ Primary focus and responsibility for Cos-Theta
- LBNL
 - Primary responsibility for CCT
 - Lead mechanical support structure effort between labs
 - **o** Primary responsibility for HTS component

These efforts are coordinated with additional research efforts by the US community, e.g.

- Nb₃Sn strand and cable R&D: Xingchen Xu and Emanuela Barzi
- Development of APC (ZrO2) Nb3Sn multifilamentary and ternary conductor: Mike Sumption

See Tuesday presentations from A. Zlobin and Mike Sumption


Technical areas have leads who are responsible for coordination and planning

Technology area	LBNL lead	FNAL lead
Modeling & Simulation	Diego Arbelaez	Vadim Kashikhin
Training and diagnostics	Maxim Martchevsky	Stoyan Stoynev
Instrumentation and quench protection	Emmanuele Ravaioli	Thomas Strauss
Material studies – superconductor and structural materials properties	lan Pong	Steve Krave

The MDP is being managed and reviewed for program coherence and technical strength

The Program is guided by **Driving Questions... related to performance**

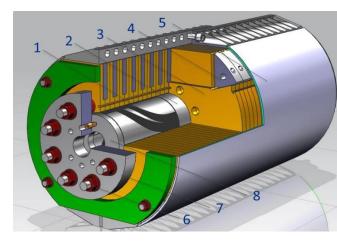
- **1**. What is the nature of accelerator magnet training? Can we reduce or eliminate it?
- 2. What are the drivers and required operation margin for Nb₃Sn and HTS accelerator magnets?
- 3. What are the mechanical limits and possible stress management approaches for Nb_3Sn and 20 T LTS/HTS magnets?
- 4. What are the limitations on means to safely protect Nb₃Sn and HTS magnets?

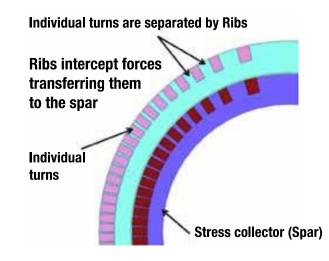
The Program is guided by **Driving Questions...related to cost**

- 5. Can we provide accelerator quality Nb₃Sn magnets in the range of 16 T?
- 6. Is operation at 16 T economically justified? What is the optimal operational field for Nb₃Sn dipoles?
- 7. What is the optimal operating temperature for Nb₃Sn and HTS magnets?
- 8. Can we build practical and affordable accelerator magnets with HTS conductor(s)?
- 9. Are there innovative approaches to magnet design that address the key cost drivers for Nb₃Sn and HTS magnets that will shift the cost optimum to higher fields?

The Program is guided by **Driving Questions...** related to conductor development

(1) What are the near and long-term goals for Nb₃Sn and HTS conductor development? What performance parameters in Nb₃Sn and HTS conductors are most critical for high field accelerator magnets?

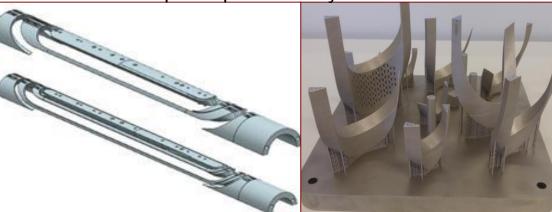



High Field Dipoles are exploring the Limits of Nb₃Sn

Two-pronged approach

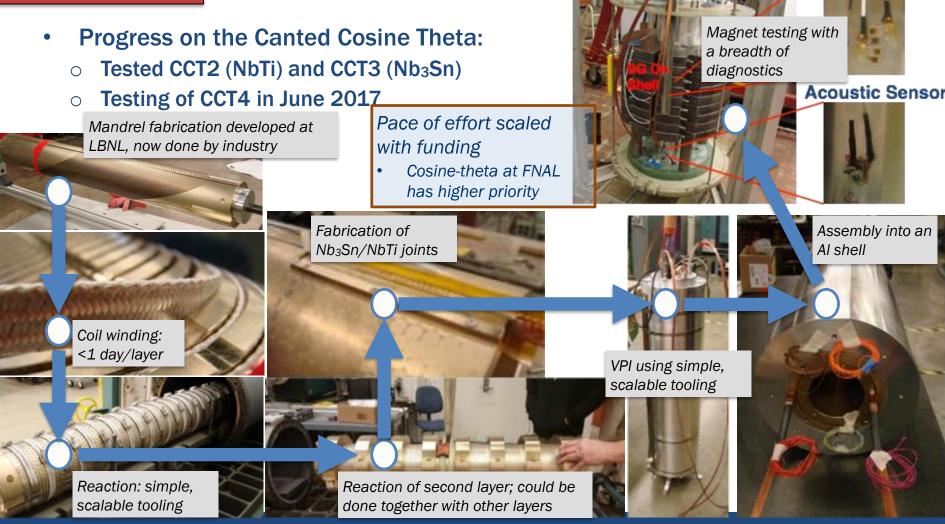
- A reference design based on cosine-theta
- See presentation by Sasha Zlobin

 A path to explore innovative designs – starting with the CCT



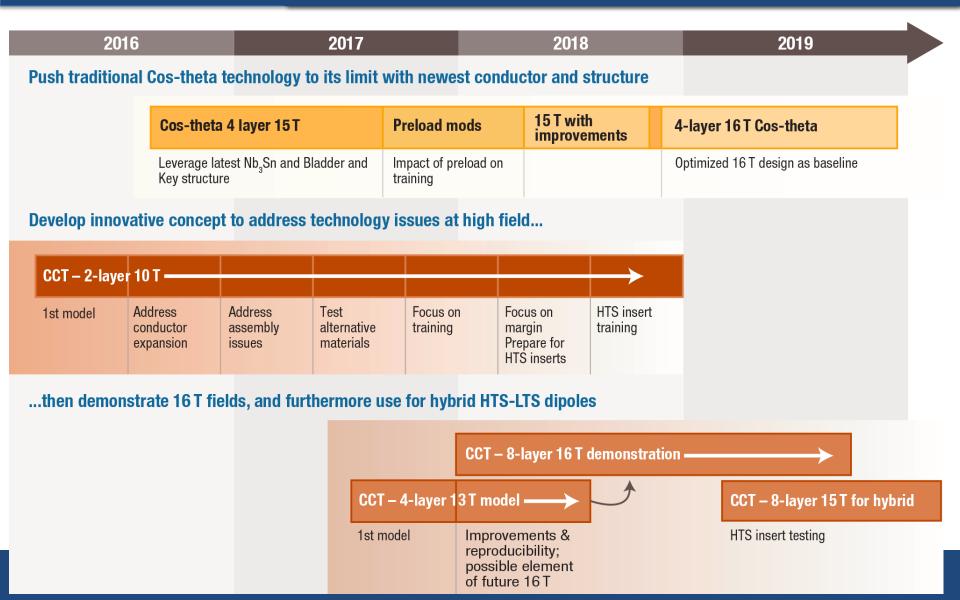
The Cosine-theta 4-layer magnet is proceeding well at FNAL, with first coil prepared for VPI

Coil parts provided by CERN


Office of

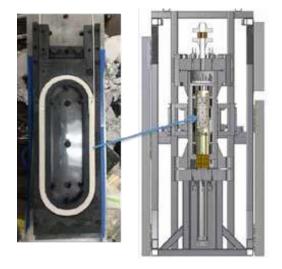
Science

ENERGY


The CCT program is proceeding to systematically address technical issues

Lead: Diego Arbelaez

Overview of the Nb₃Sn Milestone Plan, Highlighting the Cos(θ) Reference Magnet Development (top) and the Innovation Route with CCT: ~10 T Subscale Magnet Development (middle), Followed by 16 T Model Magnets

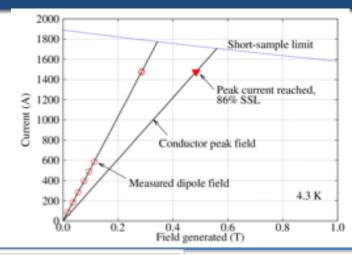


Exploring and pushing the limits of HTS for high-field dipole applications

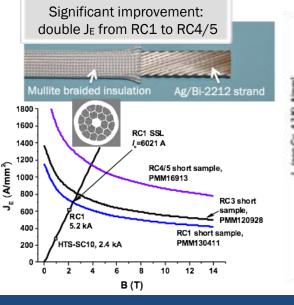
Two candidate HTS conductors

- Bi-2212
 - Rutherford cables and sub-scale magnets in racetrack and CCT configuration

- REBCO
 - Cable characterization and dipole magnet development

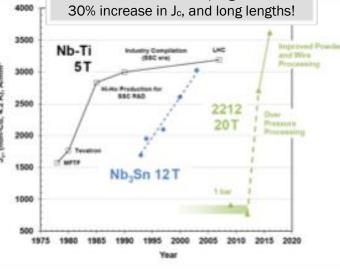


Significant progress on the Bi2212 HTS magnet front: Leveraging overpressure boost in magnet configurations


Lead: Tengming Shen

LBNL Bi2212 magnets:

- Racetrack coils fabricated and pushed to their electrical, mechanical, and quench limits
- CCT magnet prototyping in progress.

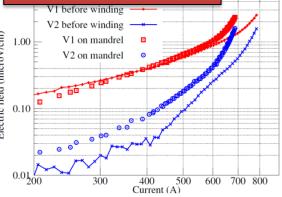


Office of

Science

. DEPARTMENT OF

Ξ


Continued recent progress:

REBCO program developing quickly: conductor and cable characterization, magnet design and prototyping underway

Lead: Xiaorong Wang

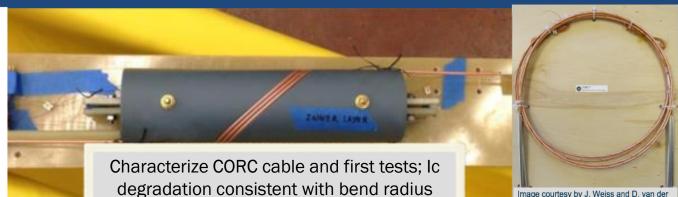
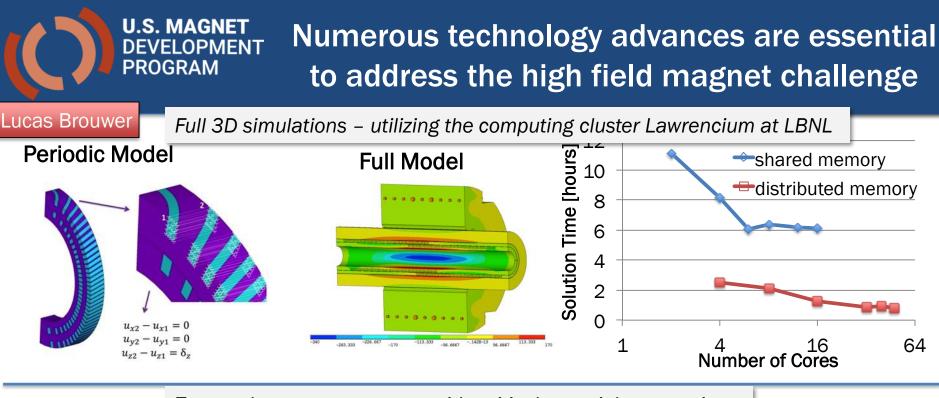


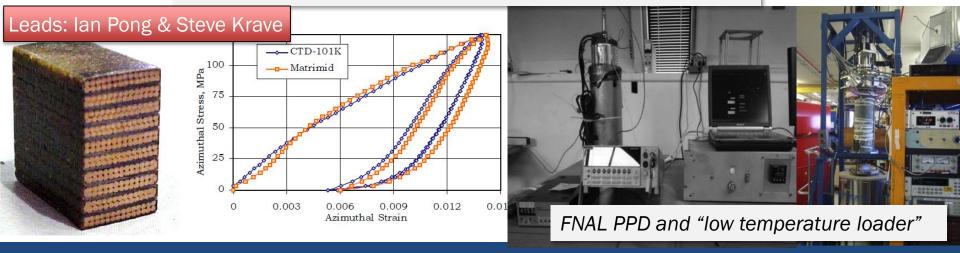
Image courtesy by J. Weiss and D. van der Laan, Advanced Conductor Technologies

Overview of the HTS Milestone Plan, Highlighting the Bi-2212 Magnet Development (top) and the REBCO Magnet Development

20 1	15	2016	2017		2018		2019
Bi-2212							
	Subscale m	agnet program	5 T, 50mm bore dipole		2 T in 5 T, 0.5 m long demo dipole		i m long demo dipole
REBCO							
	Technology exploration & magnet design studies					T in 15T, 0.5 m long emo dipole	
	2 T, 20 K conduction cooled demonstration dipole			ion dipole			
		Expl	ore other HEP	Stewardship a	pplications: F	usion, Medical	, Light Sources, etc.

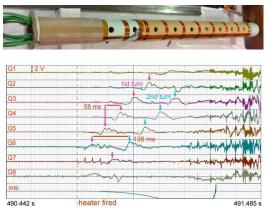

Backbone of the Program: Magnet Science and Developing Underpinning Technologies

Some examples:


- Training studies
- Modeling
- Diagnostics, quench detection, protection
- Develop infrastructure, e.g. insert testing
- New materials insulation, impregnation and structural
- Design comparison and cost analysis to guide program

Improvements from the technology development program are integrated into Nb₃Sn and HTS magnets

Ten-stack measurements provide critical materials properties

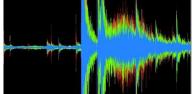


Advanced diagnostics are providing new and critical insight into the mechanisms of training and magnet performance

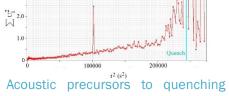
Leads: Maxim Marchevsky & Stoyan Stoynev

Warm-bore quench antennas

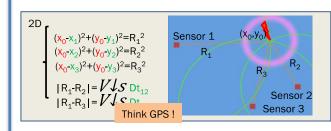
Senses axial gradient of the axial field

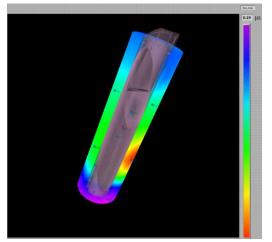


Propagation of a heater-initiated quench in HQ02b at 6 kA


"Axial-Field Magnetic Quench Antenna for the Superconducting Accelerator Magnets", M. Marchevsky, A. R. Hafalia, D. Cheng, S. Prestemon, G. Sabbi, H. Bajas, G. Chlachidze, IEEE Trans. Appl. Supercond. 25, 9500605 (2015), DOI: 10.1109/TASC.2014.2374536 Acoustic emissions as detectors

(c)

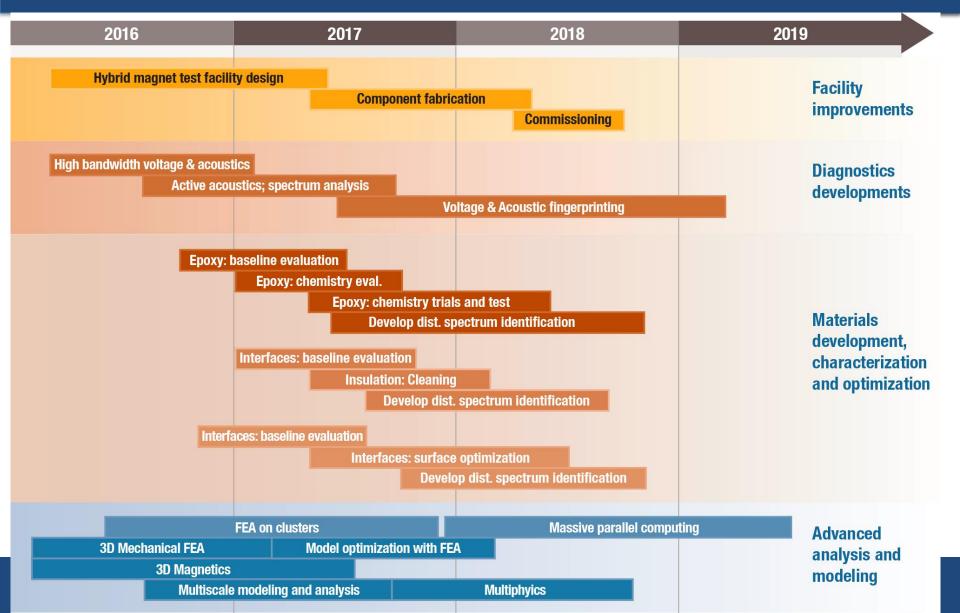

Acoustic emission detection and quench localization system a. 2.25 0.2



(HD3 dipole) during current ramp

"Detecting mechanical vibrations in superconducting magnets for quench diagnostics", M. Marchevsky, X. Wang, G. Sabbi and S. Prestemon, *Proc. of the WAMSDO 2013 Workshop*, CERN, Geneva 2013.

Acoustic emissions for localization



Pre-quench mechanical event location in CCT3 triangulated using acoustic emission sensors (color map of arrival times)

Overview of the Technology Development Milestone Plan, which Feeds the Nb₃Sn and HTS Magnet Program Elements

U.S. MAGNET DEVELOPMENT PROGRAM

Lead: Lance Cooley

Superconducting Materials Procurement and R&D is Critical for Program Success

- Push performance limits of Nb₃Sn and HTS conductors based on magnet needs
- Understand
 - **O** Uniformity and reliability
 - Scalability and future cost

	Quantity	Target			
Initial specifications for Nb ₃ Sn conductor;	Diameter	0.7 to 1.2 mm; (hold @ 1.3)			
	Unit length	95% yield at 150 m			
	Jc(16 T, 4.2K)	1300 A/mm2 (best effort) 1240 in cable			
	Jc std. dev.	< 100 A/mm2			
See Tuesday presentation by Lance Cooley	RRR	>100; >50 at cable edge or in strand rolled to 15% reduction			
	Cu:NC	0.9 to 1.1 (e.g. 150/169)			
	Dse	<60 µm			
	HT duration	<240 hours			

Summary

- We have...
 - an MDP Plan that lays out our goals and a roadmap for achieving them
 - established an excellent Technical Advisory Committee to provide guidance on our program
 - identified individuals who will lead and coordinate efforts within the program
 - organized our first yearly workshop to work through the program, identify technical issues, and provide input for budgets moving forward
- Our focus now is delivering on our near term goals...
 - making the Cosine-theta 4-layer magnet a success potential new record field;
 - progressing through technical issues with the CCT to see if potential can be acheived,
 - making real dipoles from HTS and integrating them with LTS
 - procuring sufficient conductors for the program, and identifying opportunities for conductor R&D

