Physics Studies for FCC-hh Introduction

Filip Moortgat (CERN) and Heather Gray (LBNL)

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

Volume 1: SM processes (238 pages)	arXiv:1607.01831
Volume 2: Higgs and EW symmetry breaking studies (175 pages)	arXiv:1606.09408
Volume 3: beyond the Standard Model phenomena (189 pages)	arXiv:1606.00947
Volume 4: physics with heavy ions (56 pages)	arXiv:1605.01389

Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

Physics case of the FCC-hh see <u>M. Mangano, Wed morning</u>

- Study of Higgs and top quark properties and exploration of EWSB phenomena
- Mass reach enhanced by factor ~ E / 14 TeV
- Can we answer **Yes/No** questions like this?
 - Is DM a thermal WIMP?
 - Did baryogenesis take place during the EW phase transition?
 - Is the SM dynamics all there is at the TeV scale?
 - Is there a TeV-scale solution to the hierarchy problem?

CDR, 2018

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

Volume 1: SM processes (238 pages)	arXiv:1607.01831
Volume 2: Higgs and EW symmetry breaking studies (175 pages)	arXiv:1606.09408
Volume 3: beyond the Standard Model phenomena (189 pages)	arXiv:1606.00947
Volume 4: physics with heavy ions (56 pages)	arXiv:1605.01389
Volume Fundacion encortunities with the ECC bh injectors (14 pages)	

Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

Experimental analysis effort began in mid-2014 **Physics analysis studies** coordinated by F. Moortgat and H. Gray together with software, detector (W. Riegler) and phenomenology (M. Mangano) **Monthly meetings** (since February) announced on fccexperiments-hadron e-group

Performance assumptions discussed in M. Selvaggi's <u>talk</u> on Wed

FCC-hh TDR Outline

FCC Detector and Experiments CDR Outline

Benchmarks processes, detector requirements from physics

Definition of the benchmark processes with main backgrounds Detector requirements 'from physics' in terms of momentum resolution, energy resolutions, acceptance and objects like e/gamma performance, jet performance, tau, b, Etmiss, Muons, Trigger

Experiment, detector requirements from environment:

Luminosity, radiation environment, luminous region, pileup Discussion of the reference detector and alternative ideas

Software: Simulation software for FCC detectors

Magnet systems: Engineering of reference design and discussion of alternatives

Tracker: Layout, performance, technology and data rate discussion

EMCAL:

Liquid Argon and Silicon, performance and technology discussion, ideas on digital ECAL

HCAL: Organic Scintillators, Liquid Argon, SiPM technology, Silicon

Muons:

Principles of trigger versus identifier, standalone and combined performance, technologies

Trigger/DAQ: Principle concepts in relation to HL-LHC

Physics performance:

DELPHES formulation in relation to ATLAS/CMS Performance for benchmark channels

Cavern and infrastructure:

Cavern and shaft dimensions, installation scenarios, sidecavern, access, safety, shielding, activation, maintenance scenarios

Cost Goals, Strategic R&D:

Extreme radiation environment, large area silicon sensors, high speed links, microelectronics, radiation hard scintillators, Liquid Argon Technology, High precision timing detectors ...

Studies from this group will contribute to two sections

Benchmarks

Superset of benchmarks established for the CDR, more details in M. Selvaggi's talk on Wed

Higgs physics & Electroweak Symmetry Breaking Higgs self-coupling (bbγγ, bbττ, bb+leptons)

Top-Yukawa: - ttH, H \rightarrow γ γ , H \rightarrow bb Rare Higgs decays (H \rightarrow cc, H \rightarrow $\mu\mu$, H \rightarrow Z γ) **"Big Five": Higgs decays** (H \rightarrow 4*I*, WW , γ γ , $\tau\tau$, bb) WW scattering Other Higgs (H+/- \rightarrow tb), A \rightarrow tt

Top physicstt γ /ZtWb (single top s-channel)FCNCsrare decays

Benchmarks serve one (or both) of these goals:

 illustrate sensitivity/reach for key physics channels
 act as a benchmark for detector performance (calorimeter granularity, momentum resolution, ...) Strong SUSY gluinos, squarks: jets + MET, s.s dileptons + jets + MET stops: 0/1 leptons + jets + MET

> Weak SUSY EW-ino: 3/4 leptons + MET Higgsino (disappearing tracks) Dark Matter

> > Heavy Resonances $Z' \rightarrow tt, jj, ee/\mu\mu$: $M_Z = 5, 30 \text{ TeV}$ *Diboson* $m(q^*) = 50 \text{TeV}$

See talks in this session by P. Harris, B. di Micco, M. Selvaggi, O. Cakir, R. Sawada *Italics*: studies currently ongoing (at least at a minimal level).
There are many opportunities for volunteers to join!

Reference Detector for the CDR

4T, 10m bore solenoid, 4T forward solenoids , no shielding coil

- \rightarrow 14 GJ Stored Energy
- \rightarrow Rotational symmetry for tracking and trigger !
- \rightarrow 20m Diameter (\approx ATLAS)
- \rightarrow 15m shaft

The performance of this reference detector has been implemented in DELPHES and will be used for the CDR studies

W. Riegler, Mon afternoon

Reminder: Getting started

- Pick a topic from the benchmarks or propose your favourite topic
- Follow the FCC Pythia + Delphes + Heppy <u>tutorial</u> (M. Selvaggi)
 - Note that v0.8.1 of the FCC software was just released
- Check the <u>MC event database</u> (C. Helsens, M. Selvaggi)
 - Les Houches events (many sample available)
 - FCC events (via Delphes) (in progress)

Overview

- · Generate and Simulate Events
- Analyze Events
- Plot events
- Homework exercise

Overview

This tutorial will teach you how to:

- generate signal and background samples with Pythia8 within FCCSW
- run a fast parametric detector simulation with Delphes within FCCSW
- apply an event selection on those samples with Heppy
- produce flat ntuples with observables of interest with Heppy
- produce plots

This tutorial has been tested on bash shells. It is not guaranteed to work on other shells.

Part I: Generate and simulate Events with FCCSW

First, log into lxplus, and install the FCC software, using git:

git clone https://github.com/HEP-FCC/FCCSW.git
cd FCCSW
source ./init.sh
nake -j 12

Produce H→ZZ plots from scratch within ~20 mins Little software expertise needed Very low threshold to contribute

Searches for Supersymmetry: Stop searches

Stop discovery up to ~8 TeV for 30 ab⁻¹ (exclusion ~ 9-10 TeV)

Plan: study boosted top reconstruction (calorimeter granularity dependence?) and consider also a muonic top tagger

BSM Resonances

- High mass resonances are excellent benchmarks for physics object performance (muons, electrons, jets). Studies may include variations on the reference detector layout
- (e.g. increase/decrease granularity) to understand potential gains/losses.

jj-resonance

tt-resonance

- 2 bachelor students currently working on Z' to ee and mumu
- 4 CERN summer students will work on FCC-hh physics studies

Introduction	Filip Moortgat et al.
"Pavillon"	10:30 - 10:40
Dark Matter searches	Philip Coleman Harris
"Pavillon"	10:40 - 11:00
Di-Higgs studies	Biagio Di Micco
"Pavillon"	11:00 - 11:15
Higgs properties	Michele Selvaggi
"Pavillon"	11:15 - 11:35
Top FCNC	Orhan Cakir
"Pavillon"	11:35 - 11:45
Disappearing Track	Ryu Sawada
"Pavillon"	11:45 - 11:55