

B. Di Micco Università degli Studi di Roma Tre & I.N.F.N.

The Higgs potential

 $V(h) = \mu^2 \frac{h^2}{2} + \lambda \frac{h^4}{4}$

Im())

After spontaneous symmetry breaking:

The strength of the triple and quartic couplings is fully fixed by the potential shape.

1) it is the last missing ingredient of the SM, like the Higgs boson was the last missing particle, we need to prove that things really behave like we expect;

Why is it relevant?

2) It has implications on the stability of the Vacuum;

3) It could make the Higgs boson a good inflation field (see backup)

B. Di Micco

Re(ø)

hh production and decay

B. Di Micco

Di-Higgs studies

Current status @LHC

	√s [TeV]	L (fb ⁻¹)	σ(fb)	σ/σ _{SM}
ATLAS: 4b, bbττ, bbγγ, WWγγ WWWW	8	20.3	< 470	< 18
ATLAS: 4b	13	13.3	< 1000	< 29
CMS: 4b	13	2.32	< 11760	< 310
ATLAS: WWγγ	13	13.3	< 12900	< 340
ATLAS: bbγγ	13	3.2	< 5400	< 142
CMS: bbττ	13	39.5	< 950	< 25
CMS: WWbb	13	36	< 3270	< 86

HL-LHC $\sqrt{s} = 14$ TeV, L = 3000 fb ⁻¹	Exp. sign	λ/λ _{SM} 95% C.L.	exp σ/σ _{SM}
ATLAS: bbγγ	1.05 σ	[-0.8, 7.7]	< 1.7 [recalc.]
CMS: bbγγ	1.6 σ		< 1.3
ATLAS: 4b	?	[0.2, 7.0] _{stat.} , [-3.5, 11]	< 1.5 _{stat.} , 5.2
CMS: 4b	0.67		< 2.9 _{stat.} , 7
ATLAS: bbττ	0.6 σ	[-4, 12]	< 4.3
CMS: bbττ	0.39		<3.9 _{stat.} , 5.2
CMS: VVbb	0.45		< 4.6 _{stat.} , 4.9

Present best channel 4b, situation will change with higher statistics when syst. dominated channels will saturate their sensitivity.

HL-LHC doesn't seem able to provide a useful constraint on λ , it could probably provide an observation of the whole process.

But advanced analysis techniques are on going... (more this summer)

B. Di Micco

Di-Higgs studies

FCC studies

Main references

- Physics at a 100 TeV pp collider [arXiv:1606.09408]
- 1st FCC-hh Physics Workshop 16-20 January 2017 CERN
- FCC-hh physics analysis meetings
- studies performed with different level of details, in particular trigger eff. simulatio pile-up studies need to be implemented in many of them, but first bulk of phys. potentiality ready.

Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies

Editors:

R. Contino^{1,2}, D. Curtin³, A. Katz^{1,4}, M. L. Mangano¹, G. Panico⁵, M. J. Ramsey-Musolf^{6,7},

G. Zanderighi¹

Contributors:

C. Anastasiou⁸, W. Astill⁹, J. K. Behr^{10,11}, W. Bizon⁹, P. S. Bhupal Dev¹², D. Bortoletto¹⁰, Q.-H. Cao^{13,14,15}, F. Caola¹, J. Chakrabortty¹⁶, C.-Y. Chen^{17,18,19}, S.-L. Chen^{15,20}, F. Dulat⁸, G. Bambhaniya²¹, D. Buttazzo²² D. de Florian²³, C. Englert²⁴, J. A. Frost¹⁰, B. Fuks²⁵, T. Gherghetta²⁶, G. Giudice¹, J. Gluza²⁷, N. Greiner²⁸, H. Gray²⁹, N. P. Hartland¹⁰, C. Issever¹⁰, T. Jeliński²⁷, A. Karlberg⁹, J. H. Kim,^{30,31,32}, F. Kling³³, A. Lazopoulos⁸, S. J. Lee^{34,35}, Y. Liu¹³, G. Luisoni¹, J. Mazzitelli^{23,36}, B. Mistlberger¹, P. Monni⁹, K. Nikolopoulos³⁷, R. N Mohapatra³, A. Papaefstathiou¹, M. Perelstein³⁸, F. Petriello³⁹, T. Plehn⁴⁰, P. Reimitz⁴⁰, J. Ren⁴¹, J. Rojo¹⁰, K. Sakurai⁴², T. Schell⁴⁰, F. Sala⁴³, M. Selvaggi⁴⁴, H.-S. Shao¹, M. Son³⁰, M. Spannowsky⁴², T. Srivastava¹⁶, S.-F. Su³³, R. Szafron⁴⁵, T. Tait⁴⁶, A. Tesi⁴⁷, A. Thamm⁴⁸, P. Torrielli⁴⁹, F. Tramontano⁵⁰, J. Winter⁵¹, A. Wulzer⁵², Q.-S. Yan^{53,54,55}, W. M. Yao⁵⁶, Y.-C. Zhang⁵⁷, X. Zhao⁵³, Z. Zhao^{53,58}, Y.-M. Zhong⁵⁹

16-20 January 2017 CERN Europe/Rome timezone

B. Di Micco

Di-Higgs studies

Pile-up and det. simulation

pile-up configuration used in this presentation (when used), simulated with Delphes using CMS HL-LHC cards Jet pile-up subtraction through Jet Area correction

• WWbb 50, 200, 900 vertices

Base-line geometry Twin solenoid + <u>Dipole magnetic system</u>

Tracker Fwd Tracker EMCAL Dipole HCAL Coil+Cryostat Muon system **Detector simulation with** Delphes or simple smearing of truth level objects Simulation of the 5 ns low and high luminosity phase and of the 25 ns high luminosity phase

Calorimetry

75% WWbb 85 % ZZbb $|\eta| < 2.5$

64% 2.5 < $|\eta|$ < 4.0

Di-Higgs studies

hh→bbγγ

Selection		Process	Acceptance cuts [fb]	Final selection [fb]	Events ($L = 30 \text{ ab}^{-1}$)
		$h(b\bar{b})h(\gamma\gamma)$ (SM)	0.73	0.40	12061
1. 2γ, 2 b-jet η < 4.5, p _T s	ub > 35, p_T^{lead} > 60 GeV	$bbj\gamma$	132	0.467	13996
2. $ m_{\gamma\gamma} - m_h < 2.0$, 100 <	m _{bb} < 150 GeV	$jj\gamma\gamma$	30.1	0.164	4909
3. p_T^{bb} , $p_T^{\gamma\gamma}$ > 100 GeV, Δ	$R_{bb}, \Delta R_{\gamma\gamma} < 3.5$	$t\bar{t}h(\gamma\gamma)$	1.85	0.163	4883
Simulation 6T mag	natic field	$bb\gamma\gamma$	47.6	0.098	2947
onnulation of mayi		$bbh(\gamma\gamma)$	0.098	7.6×10^{-3}	227
Signal LO samples, Pythi	a6 showering, no	$bj\gamma\gamma$	3.14	5.2×10^{-3}	155
pile-up simulation		Total background	212	1.30	27118
	Process E	vents	Shape an	n = 0 / 0 [2.5] alysis m _{jj} , m	/ο SIY. SYSL] ^{γγ}
Updates:		0000	bbyy		нн
' 4T magnetic field	bbjγ 1	2300 6700	200 F 15 (2015)		
Pythia8 showering	<u>j</u> jγγ 1	4272 ¹⁶⁰	2010-0028		80
	tth(γγ) 1	4213 ¹²⁰			60 40
	bbyy 7	2078 ⁸⁰			
	bjyy 1	873	100 110 120 130 140 15		haa m
$\Delta \sigma / \sigma = 2.1\% [30 \text{ ab}^{-1}]$	Total bkg	6436	$\Delta \sigma$	$\sigma = 1.6\%$	
$\Delta\lambda/\lambda = 7\%$ [2.5% sig. sy	st.] 2x Total ba	ackground	$\Delta\lambda/\lambda = 4.2$	% [0% sig. s	syst.]

B. Di Micco

				σ_{HH}								8	
	- V		/	10 ¹									
				10 ⁰	-								
Main b	ackgro	und:	multi-j¢	et 4b	-10	-5	0	5	10				
Strate	gy: truth	leve al N	el study, otwork i	resolved +	- boosted		λ_3						
discrin	ninator)	arn	ELWOIK	useu as sig	JIIAI								
1.	R 0.4 je	ts p ₁	- > 40 G	ieV, η < 2.	5							ka al	
2.	R 1.0 je	ts p ₁	- > 200	GeV, ŋ < 2	2.0		Resol	ved			BOOSI	led	
3.	R 0.3 je	ts gł	nost ass	to R 1.0 p 10 ab	o⊤ > 50 η -1	< 2.5							
Ca	tagory				N back	S/\sqrt{R}	S/B			FCC100, <i>L</i>	$2 = 10 \text{ ab}^{-1}$		
			_ 0	5 10 ⁴	$\frac{1}{\text{ev}}$ back		$\frac{D}{D}$	20-	Resc	lved	,		
Bo	osted	$y_{\rm cut}$	= 0 = 0.99	$\frac{5 \cdot 10}{2 \cdot 10^4}$	$1 \cdot 10^6$	$\frac{0}{22}$	0.10 2.10^{-2}		Inter	mediate			
		y_{cut}	= 0	$\frac{2 \cdot 10}{3 \cdot 10^4}$	$\frac{1}{1 \cdot 10^8}$	3	$\frac{2 \cdot 10}{3 \cdot 10^{-4}}$	15	— Boos	sted			
Intern	mediate	$y_{ m cut}$	= 0.98	$2 \cdot 10^4$	$2\cdot 10^6$	10	$7 \cdot 10^{-3}$	B				1	
	olved	$y_{ m cut}$	= 0	$1 \cdot 10^5$	$8 \cdot 10^8$	4	$1 \cdot 10^{-4}$						
KC3		$y_{ m cut}$	= 0.95	$6 \cdot 10^4$	$2 \cdot 10^7$	15	$4 \cdot 10^{-3}$					and the second	
			$\delta_{ m sys}\sigma$	= 25%	$\delta_{\rm sys}\sigma =$	= 100%		5				annanna.	
	Boostee	1	$\lambda_3 \in [-$	-0.1, 2.2]	$\lambda_3 \in [-1]$	1.5, > 9]	0		l			
In	termedi	ate	$\lambda_3 \in$	[0.7, 1.6]	$\lambda_3 \in [-0]$	0.4, > 9]	<u>8</u> .0	0.2	0.4 ANN out	0.6 put cut	0.8 1.0	
]	Resolve	d	$\lambda_3 \in$	[0.9, 1.5]	$\lambda_3 \in [-$	-0.1, 7]		2	5% on σ v	vith S/B -	~4·10 ⁻³ .		
Ser	nsitivity	to λ	. from u	Inboosted	objects,	λ diag	ram	Δ	B/B ~ 10 ⁻	³ (very c	hallengi	ng)	
cor	ntribute	s m	ainly at	low m _{hh}									

B. Di Micco

Di-Higgs studies

Multi-lepton modes

 $hh \rightarrow (b\bar{b})(ZZ^*) \rightarrow (b\bar{b})(4\ell), hh \rightarrow (b\bar{b})(WW^*)/(\tau^+\tau^-) \rightarrow (\dot{b}\bar{b})(\ell^+\ell^-), hh \rightarrow (b\bar{b})(\mu^+\mu^-) \text{ and } hh \rightarrow (b\bar{b})(Z\gamma) \rightarrow (b\bar{b})(\ell^+\ell^-\gamma)$

 Typically low yield 	channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$	$N_{30 \text{ ab}^{-1}}(\text{ideal})$	$N_{30 \text{ ab}^{-1}}(\text{LHC})$
and low background	$\mathbf{h}\mathbf{h} o (b\bar{b})(\ell^+\ell^-\ell^{\prime+}\ell^{\prime-})$	0.26	130	41
thanks to the multi-	$\mathbf{t}\mathbf{\bar{t}}\mathbf{h} \to (\ell^+ b \nu_\ell)(\ell'^- \bar{b}\bar{\nu}_{\ell'})(2\ell)$	193.6	304	109
lepton final state;	$\mathbf{t}\overline{\mathbf{t}}\mathbf{Z} \to (\ell^+ b \nu_\ell)(\ell'^- \overline{b}\overline{\nu}_{\ell'})(2\ell)$	256.7	66	25
	$\mathbf{Zh} \to (b\bar{b})(4\ell)$	2.29	$\mathcal{O}(1)$	$\mathcal{O}(1)$
 Exception for WWbb 	$\mathbf{ZZZ} \to (4\ell)(b\bar{b})$	0.53	$\mathcal{O}(1)$	$\mathcal{O}(1)$
→ IIbb (high top	$\mathbf{b}\mathbf{\bar{b}h} \to b\bar{b}(4\ell) (p_{T,b} > 15 \text{ GeV})$	0.26	$\mathcal{O}(10)$	$\mathcal{O}(1)$
background)	$\mathbf{ZZh} \to (4\ell)(b\bar{b})$	0.12	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$

30 ab⁻¹

channel	$\sigma(100 \text{ TeV})$ (fb)	$N_{30 \text{ ab}^{-1}}(\text{ideal})$	$N_{30 \text{ ab}^{-1}}(\text{LHC})$			
$\mathbf{hh} \to (b\bar{b})(W^+W^-) \to (b\bar{b})(\ell'^+\nu_{\ell'}\ell^-\bar{\nu}_{\ell})$	27.16	209	199	Channel	S/√(S+B)	S/B
$\mathbf{h}\mathbf{h} \to (b\bar{b})(\tau^+\tau^-) \to (b\bar{b})(\ell'^+\nu_{\ell'}\bar{\nu}_{\tau}\ell^-\bar{\nu}_{\ell}\nu_{\tau})$	14.63	385	243	41	58	0.35
$\mathbf{t}\overline{\mathbf{t}} \to (\ell^+ b \nu_\ell) (\ell'^- \bar{b} \bar{\nu}_{\ell'})$ (cuts as in Eq. 49)	25.08×10^3	343^{+232}_{-94}	158^{+153}_{-48}		0.0	0.00
$\mathbf{b}\bar{\mathbf{b}}\mathbf{Z} \to b\bar{b}(\ell^+\ell^-) (p_{T,b} > 30 \text{ GeV})$	107.36×10^3	2580^{+2040}_{-750}	4940_{-1130}^{+2250}	21	9.4	0.17
$\mathbf{ZZ} \to b\bar{b}(\ell^+\ell^-)$	356.0	$\mathcal{O}(1)$	$\mathcal{O}(1)$			
${f hZ} ightarrow bar{b}(\ell^+\ell^-)$	99.79	498	404	bbuu	ι, bbllγ have	а
$\mathbf{b}\mathbf{\bar{b}h} \to b\bar{b}(\ell^+\ell^-) (p_{T,b} > 30 \text{ GeV})$	26.81	$\mathcal{O}(10)$	$\mathcal{O}(10)$	negligible contrinution		

B. Di Micco

Di-Higgs studies

Object in pile-up environment [WWbb analysis]

♦ Particle Flow Reconstruction

- Using charged hadrons, muons, electrons and calorimeter towers to build particle-flow objects
- Tracks from pile-up are rejected if $|Z_0 Z_{PV}| > \sqrt{\sigma^2(Z_0) + \sigma^2(Z_{PV})}$
- Jets
 - Anti-Kt (Fast Jet) algorithm
 - particle-flow objects as inputs
 - R = 0.4٠
 - Jet Area pile-up correction:
 - private calibration to particle level $p_T^{\text{corrected}} = p_T^{\text{raw}} \rho \cdot \text{JetArea}$
 - $p_T^{jet} > 20 \text{ GeV}$

Missing Transverse Energy

- Anti-Kt (Fast Jet) algorithm
- negative vector sum of Jets, after pile-up correction and calibration

B. Di Micco

Di-Higgs studies

FCC Week - Berlin 29-05 01-06 2017

Missing ET resolution ^{rri} 0.18 **Delphes Simulation** √s=100 TeV 0.16 aMC@NLO + Herwig++ (withFF) Pile-up = 50 0.14 $HH \rightarrow WW, b \overline{b}$ Pile-up = 200 0.12 - Pile-up = 900 RMS [GeV] 57.15 0.1 79.70 152.96 0.08 0.06 0.04 0.02 -400 -300 200 -200 -100 0 100 300 400- E^{miss,true} [GeV] $E_{x,v}^{miss}$

10

WWbb→lvqqbb MVA analysis

B. Di Micco

Di-Higgs studies

FCC Week - Berlin 29-05 01-06 2017

11

VBF jets at high η go in the very forward region, 50% event loss with η acceptance of 4 instead of 5

Not strong sensitivity to SM hh production, but adds information on New Physics operators

	68% probability interval on $\delta_{c_{2V}}$					
	$1 imes \sigma_{ m bkg}$	$3 \times \sigma_{\rm bkg}$				
LHC_{14}	[-0.37, 0.45]	[-0.43, 0.48]				
HL-LHC	[-0.15, 0.19]	[-0.18, 0.20]				
FCC_{100}	[0, 0.01]	[-0.01, 0.01]				

			$14~{\rm TeV}$	$100~{\rm TeV}$
		$p_{T_j} (\text{GeV}) \geq$	25	40
Accorton co cuto		$p_{T_b} (\text{GeV}) \geq$	25	35
Acceptance cuts		$ \eta_j \leq$	4.5	6.5
		$ \eta_b \leq$	2.5	3.0
VBF cuts		$ \Delta y_{jj} \ge$	5.0	5.0
		$m_{jj}~({\rm GeV}) \geq$	700	1000
	Central jet veto:	$p_{T_{j_3}}~({\rm GeV})~\leq$	45	65
		$m_{hh} (\text{GeV}) \geq$	500	1000

	95% probability upper limit on μ						
	$1 \times \sigma_{\rm bkg}$	$3 \times \sigma_{\rm bkg}$					
LHC_{14}	109	210					
HL-LHC	49	108					
FCC_{100}	12	23					

B. Di Micco

Di-Higgs studies

Conclusion

- γγbb looks to be the golden channel;
- need to reach maximal accuracy in this channel simulation, implementing pile-up simulation and more accurate fake estimate;
- detector design should be driven by minimisation or systematics on it;
- more work needed on WWbb to fully exploit its potentiality;
- highly boosted topologies are less useful for λ measurement, sensitivity to λ from low m_{hh} region

Di-Higgs studies

Conclusion

- γγbb looks to be the golden channel;
- need to reach maximal accuracy in this channel simulation, implementing pile-up simulation and more accurate fake estimate;
- detector design should be driven by minimisation or systematics on it;
- more work needed on WWbb to fully exploit its potentiality;
- highly boosted topologies are less useful for λ measurement, sensitivity to λ from low m_{hh} region

FCC-hh looks to have a strong physics case

Higgs quartic

	Signal	$bar{b}jj\gamma\gamma$	$Ht\bar{t}$	S/B	S/\sqrt{B}
preselection	50	2.3×10^5	2.2×10^4	$2.5 imes 10^{-4}$	0.14
$\chi^2_{H,min} < 6.1$	26	4.6×10^4	$9.9 imes 10^3$	5.0×10^{-4}	0.14
$ m_H^{rec} - 126~{\rm GeV} < 5.1~{\rm GeV}$	20	1.7×10^4	$7.0 imes 10^3$	8.1×10^{-4}	0.15

30 ab⁻¹: $-4 < \lambda_4 < 16$

B. Di Micco

Di-Higgs studies

Higgs boson as inflaton

Gravitational action coupled to the SM sector

$$S = \int \left[\frac{1}{2} M_{\rm pl}^2 R + \mathcal{L} \right] d^4 x \sqrt{-g} = \int \left[\frac{1}{2} M_{\rm pl}^2 R - \frac{1}{2} \partial_\mu h \partial^\mu h + V(h) + \dots \right] d^4 x \sqrt{-g}$$

Inflation model

- need a scalar field (h is a scalar field)
- need a well shaped potential, with a slow-roll condition

$$V(\phi) >> \frac{1}{2}\dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3}V(\phi) \simeq const. \longrightarrow a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a}\right)$$

universe radius, exponentially expanding during inflation

In order to make this to work

$$h >> h_0 V(h) \sim \lambda h^4 \lambda \sim 10^{-13}$$

Intringuing, λ nearly vanishes for high h value with the present value of top and Higgs mass.

The Higgs potential could have such role if properly shaped Inflationary epoch $\epsilon = \frac{M_{Pl}^2}{2} \left(\frac{V_{\phi}}{V}\right)^2 \leq 1$

 h_0

Understanding the Higgs potential is the last missing piece of the SM, and it could have fundamental cosmological implications.

 $\eta = M_{Pl}^2 \frac{V_{\phi\phi}}{V} << 1$

n

Rank : Variable : Variable Importance

- 6 : whadmass : 6.982e-02
- 8 : npt
- 10 : wwpt
- 11 : bjetpt1 : 4.754e-02
- 12 : www.ass : 4.454e-02
- 13 : bjetpt2 : 3.076e-02

- 1 : drll : 1.387e-01 2 : drbb : 1.342e-01
- 3 : d_drww : 1.256e-01
- 4 : wwmt : 9.601e-02
- 5 : bbmass : 7.286e-02
- 7 : bbpt : 6.592e-02
 - : 6.471e-02
- 9 : wlepmt : 6.026e-02
 - : 4.913e-02

The $hh \rightarrow ZZbb \rightarrow 4lbb$ channel

- \geq 4 muons with $p_T > 5$ GeV, $|\eta| < 4.0$
- \geq 4 electrons with $p_T > 7$ GeV, $|\eta| < 4.0$
- Z_1 selection: $\ell \ell$ pair with mass closest to the nominal Z boson mass $40 \text{ GeV} < m_{Z1} < 120 \text{ GeV}$
- Z₂ selection: second ℓ ℓ pair $12 \text{ GeV} < m_{72} < 120 \text{ GeV}$
- Among the 4 selected leptons: at least one with p_T >20 GeV and one with p_T >10 GeV
- QCD suppression: m(ℓ ℓ) > 4 GeV
- Kinematic cuts: $m_{4_{\mu}} > 120$ GeV, $m_{4_{\mu}} < 130$ GeV
- At least 2 b-jets with $p_T > 30$ GeV

- forward b-tagging can be an important ingredient of the analysis, need to test configuration with fwd dipole
- big impact from lepton isolation cut (not presented here), need to optimise isolation criteria

$\mathcal{L} = 3 \, \mathrm{ab}^{-1}$

	σ·L· Br(hh→ZZbb→4lbb	no b-jet req.	with b-jet	ε (no b-jet)	ε (b-jet)
4μ	161	61	12.1	38%	7.4%
4e	161	40	7.7	25%	4.8%
Tot	322	101	20	31%	6.2%

B. Di Micco

Di-Higgs studies

FCC Week - Berlin 29-05 01-06 2017

s = 100 TeV

Vacuum stability regions

We are at the edge between stability and instability, in a quite narrow region of the meta-stability region (many theoretical speculations are starting, why are we there?)

B. Di Micco

Di-Higgs studies

Vacuum stability

B. Di Micco

Di-Higgs studies