

After spontaneous symmetry breaking:

$$
\begin{aligned}
& \lambda h_{0}^{2} \eta^{2}+\frac{\lambda}{4} \eta^{4}+\lambda h_{0} \eta^{3} \\
& m_{h}^{2}=2 \lambda h_{0}^{2} \quad \begin{array}{ll}
& \mathbf{h} \quad \mathbf{h} \\
\vdots & \ddots \\
& \ddots \\
& \ddots
\end{array}
\end{aligned}
$$

The strength of the triple and quartic couplings is fully fixed by the potential shape.

1) it is the last missing ingredient of the SM, like the Higgs boson was the last missing particle, we need to prove that things really behave like we expect;
2) It has implications on the stability of the Vacuum;
3) It could make the Higgs boson a good inflation field (see backup)

hh production and decay

Standard Model

Higgs decay branching fraction

$\begin{array}{lllll}0 & 0.1 & 0.2 & 0.3 & 0.4\end{array}$

NNLO with full top mass *NLO $\mathrm{m}_{\mathrm{t}} \rightarrow \infty$

$\mathrm{m}_{\mathrm{h}}=125.09 \mathrm{GeV}$	o(fb)	scale unc. (\%)	PDF unc. (\%)	a_{s} unc.
$\sqrt{\text { s }}=7 \mathrm{TeV}$	7.71	+4.0/-5.7	± 3.4	± 2.8
$\sqrt{\text { s }}=8 \mathrm{TeV}$	11.17	+4.1/-5.7	± 3.1	± 2.6
$\sqrt{\text { s }}=13 \mathrm{TeV}$	37.91	+4.3/-6.0	± 2.1	± 2.3
$\sqrt{\text { s }}=14 \mathrm{TeV}$	45.00	+4.4-6.0	± 2.1	± 2.2
$\sqrt{\text { s }}=33 \mathrm{TeV} *$	206.6	+15.1-12.5	+5.8/-5.0	
$\sqrt{\text { s }}=100 \mathrm{TeV}$	1748	+5.1/-6.5	± 1.7	± 2.0

Current status @LHC

	$\sqrt{\text { s [TeV] }}$	L (fb-1)	o(fb)	o/osm
ATLAS: 4b, bbtt, bb $\gamma \gamma$, WW ${ }^{\text {\% }}$ WWWW	8	20.3	< 470	
ATLAS: 4b	13	13.3	< 1000	<
CMS: 4 b	13	2.32	< 11760	< 310
ATLAS: WW $\gamma \gamma$	13	13.3	< 12900	< 340
ATLAS: bb $\gamma \gamma$	13	3.2	< 5400	< 142
CMS: bbit	13	39.5	< 950	<
CMS: WWbb	13	36	< 3270	< 86

$\begin{aligned} & \text { HL-LHC } \sqrt{ } \mathrm{s}=14 \mathrm{TeV}, \\ & \mathrm{~L}=3000 \mathrm{fb}^{-1} \end{aligned}$	Exp. sign	$\lambda \lambda$ sm 95\% C.L.	exp $\mathbf{\sigma}^{\text {/ }}$ sm
ATLAS: bb $\gamma \gamma$	1.05σ	[-0.8, 7.7]	<1.7 [recalc.]
CMS: bbyy	1.60		< 1.3
ATLAS: 4 b	?	$[0.2,7.0]_{\text {stat., }}[-3.5,11]$	<1.5 stata, 5.2
CMS: 4b	0.67		<2.9 stat, 7
ATLAS: bb τ	0.6 \%	$[-4,12]$	<4.3
CMS: bbit	0.39		<3.9 stat., 5.2
CMS: VVbb	0.45		< 4.6stat., 4.9

Present best channel 4b, situation will change with higher statistics when syst. dominated channels will saturate their sensitivity.

HL-LHC doesn't seem able to provide a useful constraint on λ, it could probably provide an observation of the whole process.

But advanced analysis techniques are on going... (more this summer)

- Main references
- Physics at a 100 TeV pp collider [arXiv:1606.09408]
- 1st FCC-hh Physics Workshop - 16-20 January 2017 CERN
- FCC-hh physics analysis meetings
- studies performed with different level of details, in particular trigger eff. simulatio pile-up studies need to be implemented in many of them, but first bulk of phys. potentiality ready.
Physics at a $100 \mathrm{TeV} p p$ collider: Higgs and EW symmetry breaking studies

Editors:
R. Contino ${ }^{1,2}$, D. Curtin ${ }^{3}$, A. Katz 1,4, M. L. Mangano ${ }^{1}$, G. Panico ${ }^{5}$, M. J. Ramsey-Musolf ${ }^{6,7}$,
G. Zanderighi ${ }^{1}$

Contributors:
C. Anastasiou ${ }^{8}$, W. Astill ${ }^{9}$, J. K. Behr ${ }^{10,11, ~ W . ~ B i z o n ~}{ }^{9}$, P. S. Bhupal Dev ${ }^{12}$, D. Bortoletto ${ }^{10}$,
Q.-H. Cao ${ }^{13,14,15}$, F. Caola ${ }^{1}$, J. Chakrabortty ${ }^{16}$, C.-Y. Chen ${ }^{17,18,19}$, S.-L. Chen ${ }^{15,20}$, F. Dulat ${ }^{8}$,
G. Bambhaniya ${ }^{21}$, D. Buttazzo ${ }^{22}$ D. de Florian ${ }^{23}$, C. Englert ${ }^{24}$, J. A. Frost ${ }^{10}$, B. Fuks ${ }^{25}$,
T. Gherghetta ${ }^{26}$, G. Giudice ${ }^{1}$, J. Gluza ${ }^{27}$, N. Greiner ${ }^{28}$, H. Gray ${ }^{29}$, N. P. Hartland ${ }^{10}$, C. Issever ${ }^{10}$,
T. Jeliński ${ }^{27}$, A. Karlberg ${ }^{9}$, J. H. Kim, ${ }^{30,31,32}$, F. Kling ${ }^{33}$, A. Lazopoulos ${ }^{8}$, S. J. Lee ${ }^{34,35}$, Y. Liu ${ }^{13}$,
G. Luisoni ${ }^{1}$, J. Mazzitelli ${ }^{23,36}$, B. Mistlberger ${ }^{1}$, P. Monni ${ }^{9}$, K. Nikolopoulos ${ }^{37}$, R. N Mohapatra ${ }^{3}$,
A. Papaefstathiou ${ }^{1}$, M. Perelstein ${ }^{38}$, F. Petriello ${ }^{39}$, T. Plehn ${ }^{40}$, P. Reimitz ${ }^{40}$, J. Ren 41, J. Rojo ${ }^{10}$,
K. Sakurai ${ }^{42}$, T. Schell ${ }^{40}$, F. Sala ${ }^{43}$, M. Selvaggi ${ }^{44}$, H.-S. Shao ${ }^{1}$, M. Son ${ }^{30}$, M. Spannowsky ${ }^{42}$, T.

Srivastava ${ }^{16}$, S.-F. Su ${ }^{33}$, R. Szafron ${ }^{45}$, T. Tait ${ }^{46}$, A. Tesi ${ }^{47}$, A. Thamm ${ }^{48}$, P. Torrielli ${ }^{49}$,
F. Tramontano ${ }^{50}$, J. Winter ${ }^{51}$, A. Wulzer ${ }^{52}$, Q.-S. Yan ${ }^{53,54,55}$, W. M. Yao ${ }^{56}$, Y.-C. Zhang ${ }^{57}$, X. Zhao ${ }^{53}$,
Z. Zhao ${ }^{53,58}$, Y.-M. Zhong ${ }^{59}$

Pile-up and det. simulation

pile-up configuration used in this presentation (when used), simulated with

Delphes using CMS HL-LHC cards Jet pile-up subtraction through Jet Area correction

- WWbb 50, 200, 900 vertices

Base-line geometry Twin solenoid + Dipole magnetic system
, "t1

$\substack{\text { toanme } \\ \text { peated }}$
ZZbb

Tracker
EMCAL
HCAL
Coil+Cryostat
Muon system

Fwd Tracker Dipole

Detector simulation with
Delphes or simple smearing of truth level objects

Simulation of the 5 ns low and high luminosity phase and of the 25 ns high luminosity phase

Calorimetry

ECAL granularity:
$0.0125 \times 0.0125|\eta|<2.5$

HCAL granularity:

$0.025 \times 0.0252 .5<|\eta|<4.00 .1 \times 0.12 .5<|\eta|<4.0$
$0.05 \times 0.05 \quad 4.0<|\eta|<6.00 .2 \times 0.24 .0<|\eta|<6.0$
ECAL Energy Resolution: HCAL Energy Resolution:
$\sigma(E) / E=10 \% / \sqrt{ } E \oplus 1 \%$
$|\eta|<6.0$

Efficiency c-quark jets:
$4 \%|\eta|<2.5$
$3 \% 2.5<|\eta|<4.0$
Efficiency light-quark jets:
$0.1 \%|\eta|<2.5$
$0.075 \% 2.5<|\eta|<4.0$
Efficiency b-quark jets:
75\% WWbb 85 \% ZZbb $|\eta|<2.5$
$64 \% 2.5<|\eta|<4.0$

```
zo resolution (*)
- in |\eta|<2.5
    \sigma(\mp@subsup{z}{0}{})=0.01 mm, p
    \sigma(z
```

- $\ln 2.5<|\boldsymbol{\eta}|<4$
$\sigma\left(z_{0}\right)=0.1 \mathrm{~mm}, p_{T}<5 \mathrm{GeV}$
$\sigma\left(z_{0}\right)=0.05 \mathrm{~mm}, p_{T}>5 \mathrm{GeV}$
- $\operatorname{In} 4.0<|\eta|<6.0$
$\sigma\left(z_{0}\right)=1.0 \mathrm{~mm}, \mathrm{p}_{\mathrm{T}}<5 \mathrm{GeV}$
$\sigma\left(z_{0}\right)=0.5 \mathrm{~mm}, p_{T}>5 \mathrm{GeV}$

Selection

1. $2 \gamma, 2$ b-jet $|\eta|<4.5$, $\mathrm{p}_{T^{\text {sub }}}>35$, $\mathrm{p}^{\text {lead }}>60 \mathrm{GeV}$
2. $\left|m_{\gamma \gamma}-m_{h}\right|<2.0,100<m_{b b}<150 \mathrm{GeV}$
3. $\mathrm{p}^{\mathrm{bb}}, \mathrm{p}^{+\gamma}>100 \mathrm{GeV}, \Delta \mathrm{R}_{\mathrm{bb}}, \Delta \mathrm{R}_{\gamma \gamma}<3.5$

Simulation 6T magnetic field
Signal LO samples, Pythia6 showering, no pile-up simulation

Process	Acceptance cuts [fb]	Final selection [fb]	Events $\left(L=30 \mathrm{ab}^{-1}\right)$
$h(b \bar{b}) h(\gamma \gamma)(\mathrm{SM})$	0.73	0.40	12061
$b b j \gamma$	132	0.467	13996
$j j \gamma \gamma$	30.1	0.164	4909
$t \bar{t} h(\gamma \gamma)$	1.85	0.163	4883
$b \bar{b} \gamma \gamma$	47.6	0.098	2947
$b \bar{b} h(\gamma \gamma)$	0.098	7.6×10^{-3}	227
$b j \gamma \gamma$	3.14	5.2×10^{-3}	155
Total background	212	1.30	27118

$$
\mathrm{S} / \sqrt{ } \mathrm{B} \quad 23\left[3 \mathrm{ab}^{-1}\right] 73\left[30 \mathrm{ab}^{-1}\right] \quad \Delta \sigma / \sigma=1.6 \%\left[30 \mathrm{ab}^{-1}\right] \Delta \lambda / \lambda=6 \%[2.5 \% \text { sig. syst. }]
$$

Updates:
4T magnetic field
Pythia8 showering

	tth $(\gamma \gamma)$	14213
	$b b \gamma \gamma$	7078
	${ }^{\text {bj}} \gamma \gamma$	1873
$\begin{aligned} & \Delta \sigma / \sigma=2.1 \%\left[30 \mathrm{ab}^{-1}\right] \\ & \Delta \lambda / \lambda=7 \%\left[2.5 \% \mathrm{sig}^{2} . \mathrm{s}\right. \end{aligned}$	al bk	

2x Total background
$\Delta \lambda / \lambda=4.2 \%[0 \%$ sig. syst.]

Main background: multi-jet 4b
Strategy: truth level study, resolved + boosted analysis (Neural Network used as signal discriminator)

1. R 0.4 jets $\mathrm{p}_{\boldsymbol{T}}>40 \mathrm{GeV},|n|<2.5$
2. R 1.0 jets $\mathrm{p}_{\mathrm{T}}>200 \mathrm{GeV},|n|<2.0$

3. R 0.3 jets ghost ass. to $R 1.0$ pt $>50|n|<2.5$

$10 a^{-1}$

Category		N_{ev} signal	N_{ev} back	S / \sqrt{B}	S / B
Boosted	$y_{\text {cut }}=0$	$5 \cdot 10^{4}$	$8 \cdot 10^{7}$	6	$6 \cdot 10^{-4}$
	$y_{\text {cut }}=0.99$	$2 \cdot 10^{4}$	$1 \cdot 10^{6}$	22	$2 \cdot 10^{-2}$
Intermediate	$y_{\text {cut }}=0$	$3 \cdot 10^{4}$	$1 \cdot 10^{8}$	3	$3 \cdot 10^{-4}$
	$y_{\text {cut }}=0.98$	$2 \cdot 10^{4}$	$2 \cdot 10^{6}$	10	$7 \cdot 10^{-3}$
Resolved	$y_{\text {cut }}=0$	$1 \cdot 10^{5}$	$8 \cdot 10^{8}$	4	$1 \cdot 10^{-4}$
	$y_{\text {cut }}=0.95$	$6 \cdot 10^{4}$	$2 \cdot 10^{7}$	15	$4 \cdot 10^{-3}$

	$\delta_{\text {sys }} \sigma=25 \%$	$\delta_{\text {sys }} \sigma=100 \%$
Boosted	$\lambda_{3} \in[-0.1,2.2]$	$\lambda_{3} \in[-1.5,>9]$
Intermediate	$\lambda_{3} \in[0.7,1.6]$	$\lambda_{3} \in[-0.4,>9]$
Resolved	$\lambda_{3} \in[0.9,1.5]$	$\lambda_{3} \in[-0.1,7]$

Sensitivity to λ from unboosted objects, λ diagram contributes mainly at low $m_{h h}$
$\left.h h \rightarrow(b \bar{b})\left(Z Z^{*}\right) \rightarrow(b \bar{b})(4 \ell), h h \rightarrow(b \bar{b})\left(W W^{*}\right) /\left(\bar{\tau}^{+} \dot{\tau}^{-}\right) \rightarrow(\dot{\bar{b}})\left(\ell^{+} \ell^{-}\right), h h \rightarrow(b \bar{b}) \dot{)}^{\prime} \mu^{+} \mu^{-}\right)$and $\check{h} h \rightarrow(b \bar{b})(\ddot{Z} \gamma) \rightarrow^{\prime}(b \bar{b})\left(\grave{\ell}^{+} \hat{\ell}^{-} \gamma\right)^{\prime}$

- Typically low yield and low background thanks to the multilepton final state;
- Exception for WWbb \rightarrow llbb (high top background)

channel	$\sigma(100 \mathrm{TeV})(\mathrm{fb})$	$N_{30 \mathrm{ab}^{-1}(\mathrm{ideal})}$	$N_{30 \mathrm{ab}^{-1}(\mathrm{LHC})}$
$\mathbf{h h} \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \ell^{\prime}+\ell^{\prime}-\right)$	0.26	130	41
$\mathbf{t} \overline{\mathrm{t} h} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{\prime}-\overline{\bar{\nu}} \bar{\nu}_{\ell^{\prime}}\right)(2 \ell)$	193.6	304	109
$\mathbf{t} \overline{\mathrm{t} Z} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{\prime}-\bar{b} \bar{\nu}_{\ell^{\prime}}\right)(2 \ell)$	256.7	66	25
$\mathbf{Z h} \rightarrow(b \bar{b})(4 \ell)$	2.29	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\mathbf{Z Z Z} \rightarrow(4 \ell)(b \bar{b})$	0.53	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\mathbf{b} \overline{\mathbf{b} h} \rightarrow b \bar{b}(4 \ell)\left(p_{T, b}>15 \mathrm{GeV}\right)$	0.26	$\mathcal{O}(10)$	$\mathcal{O}(1)$
$\mathbf{Z Z h} \rightarrow(4 \ell)(b \bar{b})$	0.12	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$

$30 a b^{-1}$

channel	$\sigma(100 \mathrm{TeV})(\mathrm{fb})$	$N_{30 \text { ab }}{ }^{-1}$ (ideal)	$N_{30 \mathrm{ab}^{-1}}(\mathrm{LHC})$			
$\mathrm{hh} \rightarrow(b \bar{b})\left(W^{+} W^{-}\right) \rightarrow(b \bar{b})\left(\ell^{\prime+} \nu_{\ell^{\prime}} \ell^{-} \bar{\nu}_{\ell}\right)$	27.16	209	199	Channel	S/V $(\mathrm{S}+\mathrm{B})$	S/B
$\mathrm{hh} \rightarrow(b \bar{b})\left(\tau^{+} \tau^{-}\right) \rightarrow(b \bar{b})\left(\ell^{\prime+} \nu_{\ell^{\prime}} \bar{\nu}_{\tau} \chi^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)$	14.63	385	243	41	5.8	0.35
$\mathrm{t} \overline{\mathrm{t}} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{\prime}-\overline{\bar{b}}{\overline{\ell^{\prime}}}^{\prime}\right) \quad$ (cuts as in Eq. 49)	25.08×10^{3}	343_{-94}^{+232}	$158{ }_{-48}^{+153}$			
$\mathbf{b} \overline{\mathbf{b}} \mathbf{Z} \rightarrow b \overline{\mathrm{~b}}\left(\ell^{+} \ell^{-}\right) \quad\left(p_{T, b}>30 \mathrm{GeV}\right)$	107.36×10^{3}	2580_{-750}^{+2040}	$4940{ }_{-1130}^{+2250}$	21	9.4	0.17
$\mathrm{ZZ} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right)$	356.0	$\mathcal{O}(1)$	$\mathcal{O}(1)$	bbuu, bbll have a negligible contrinution		
$\mathrm{hZ} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right)$	99.79	498	404			
$\mathbf{b} \overline{\mathrm{b}} \mathrm{h} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right) \quad\left(p_{T, b}>30 \mathrm{GeV}\right)$	26.81	$\mathcal{O}(10)$	$\mathcal{O}(10)$			

Object in pile-up environment [WWbb analysis]

- Particle Flow Reconstruction

- Using charged hadrons, muons, electrons and calorimeter towers to build particle-flow objects
- Tracks from pile-up are rejected if $\left|Z_{0}-Z_{\mathrm{PV}}\right|>\sqrt{\sigma^{2}\left(Z_{0}\right)+\sigma^{2}\left(Z_{\mathrm{PV}}\right)}$

\uparrow Jets

- Anti-Kt (Fast Jet) algorithm
- particle-flow objects as inputs
- $R=0.4$
- Jet Area pile-up correction:

- private calibration to particle level $p_{T}^{\text {corrected }}=p_{T}^{\text {raw }}-\rho \cdot$ JetArea
- $\mathrm{p}^{\text {jet }}>20 \mathrm{GeV}$

- Missing Transverse Energy

- Anti-Kt (Fast Jet) algorithm
- negative vector sum of Jets, after pile-up correction and calibration

Jet pT response

Jet angular resolution

WWbb \rightarrow Ivqqbb MVA analysis

Input variables
$\Delta R_{\mathrm{jj}}, \Delta R_{\mathrm{bb}}, \Delta R_{\mathrm{WW}}, m_{T}^{\mathrm{WW}}, m_{\mathrm{bb}}$ $m_{\mathrm{jj}}, p_{T}^{\mathrm{bb}}, p_{T}^{\mathrm{WW}}, E_{T}^{\mathrm{miss}}, m_{T}^{\mathrm{W}}, m_{\mathrm{WW}}$
Pre-training cuts:

$$
\begin{aligned}
& p_{T}^{\mathrm{WW}}, p_{T}^{\mathrm{bb}}>150,80<m_{b b}<180 \mathrm{GeV} \\
& \Delta R_{b b}<2.0
\end{aligned}
$$

TMVA overtraining check for classifier: BDTG

stat. sign. 4.1σ with $\mathrm{S} / \mathrm{B} 0.06,13 \sigma$ @30 ab^{-1} very preliminary

B. Di Micco

Di-Higgs studies

FCC Week - Berlin 29-05 01-06 2017

VBF hh production

- $\gamma \gamma \mathrm{bb}$ looks to be the golden channel;
- need to reach maximal accuracy in this channel simulation, implementing pile-up simulation and more accurate fake estimate;
- detector design should be driven by minimisation systematics on it;
- more work needed on WWbb to fully exploit its potentiality;
- highly boosted topologies are less useful for λ measurement, sensitivity to λ from low mhn region

- $\gamma \gamma \mathrm{bb}$ looks to be the golden channel;
- need to reach maximal accuracy in this channel simulation, implementing pile-up simulation and more accurate fake estimate;
- detector design should be driven by minimisation systematics on it;
- more work needed on WWbb to fully exploit its potentiality;
- highly boosted topologies are less useful for λ measurement, sensitivity to λ from low mhn region

FCC-hh looks to have a strong physics case

Higgs quartic

h

observable	selection cut
$p_{T, b_{\{1,2,3,4\}}}$	$>\{80,50,40,40\} \mathrm{GeV}$
$\left\|\eta_{b}\right\|$	<3.0
$m_{b b}^{\text {close }, 1}$	$\in[100,160] \mathrm{GeV}$
$m_{b b}^{\text {close }, 2}$	$\in[90,170] \mathrm{GeV}$
$\Delta R_{b b}^{\text {close }, 1}$	$\in[0.2,1.6]$
$\Delta R_{b b}^{\text {close }, 2}$	no cut
$p_{T, \gamma_{\{1,2\}}}$	$>\{70,40\} \mathrm{GeV}$
$\left\|\eta_{\gamma}\right\|$	<3.5
$\Delta R_{\gamma \gamma}$	$\in[0.2,4.0]$
$m_{\gamma \gamma}$	$\in[124,126] \mathrm{GeV}$

	Signal	$b \bar{b} j j \gamma \gamma$	$H t \bar{t}$	S / B	S / \sqrt{B}
preselection	50	2.3×10^{5}	2.2×10^{4}	2.5×10^{-4}	0.14
$\chi_{H, \text { min }}^{2}<6.1$	26	4.6×10^{4}	9.9×10^{3}	5.0×10^{-4}	0.14
$\left\|m_{H}^{\text {rec }}-126 \mathrm{GeV}\right\|<5.1 \mathrm{GeV}$	20	1.7×10^{4}	7.0×10^{3}	8.1×10^{-4}	0.15

$30 \mathrm{ab}^{-1}:-4<\lambda_{4}<16$

Gravitational action coupled to the SM sector

$$
S=\int\left[\frac{1}{2} M_{\mathrm{pl}}^{2} R+\mathcal{L}\right] d^{4} x \sqrt{-g}=\int\left[\frac{1}{2} M_{\mathrm{pl}}^{2} R-\frac{1}{2} \partial_{\mu} h \partial^{\mu} h+V(h)+\ldots\right] d^{4} x \sqrt{-g}
$$

Inflation model

- need a scalar field (h is a scalar field)
- need a well shaped potential, with a slow-roll condition $V(\phi) \gg \frac{1}{2} \dot{\phi}^{2} \longrightarrow H^{2}=\frac{8 \pi G}{3} V(\phi) \simeq$ const.$\longrightarrow a(t) \simeq e^{H t} \quad\left(H(t)=\frac{\dot{a}}{a}\right)$ universe radius, exponentially expanding during inflation In order to make this to work

$$
h \gg h_{0} V(h) \sim \lambda h^{4} \lambda \sim 10^{-13}
$$

Intringuing, λ nearly vanishes for high h value with the present value of top and Higgs mass.

The Higgs potential could have such role if properly shaped

Understanding the Higgs potential is the last missing piece of the SM, and it could have fundamental cosmological implications.

Rank : Variable : Variable Importance

	drll	$1.387 \mathrm{e}-01$
2	drbb	$1.342 \mathrm{e}-01$
3	d_drww	1.256e-01
4	wwmt	9.601e-02
5	bbmass	: 7.286e-02
6	whadmass	: 6.982e-02
7	bbpt	$6.592 \mathrm{e}-02$
8	npt	6.471e-02
9	wlepmt	6.026e-02
10	wwpt	: 4.913e-02
11	bjetpt1	$4.754 \mathrm{e}-02$
12	wwmass	$4.454 \mathrm{e}-02$
13	bjetpt2	3.076e-02

≥ 4 muons with $\mathrm{p}_{\mathrm{T}}>5 \mathrm{GeV},|\eta|<4.0$
≥ 4 electrons with $\mathrm{p}_{\mathrm{T}}>7 \mathrm{GeV},|\eta|<4.0$ Z_{1} selection: $\ell \ell$ pair with mass closest to the nominal Z boson mass

$$
40 \mathrm{GeV}<\mathrm{m}_{\mathrm{z} 1}<120 \mathrm{GeV}
$$

Z_{2} selection: second $\ell \ell$ pair
$12 \mathrm{GeV}<\mathrm{m}_{\mathrm{z} 2}<120 \mathrm{GeV}$
Among the 4 selected leptons: at least one with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and one with $\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}$
QCD suppression: $\mathrm{m}(\ell \ell)>4 \mathrm{GeV}$
Kinematic cuts: $\mathrm{m}_{4_{\ell}}>120 \mathrm{GeV}, \mathrm{m}_{4_{\ell}}<130 \mathrm{GeV}$ At least 2 b-jets with $\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$

$$
\mathcal{L}=3 \mathrm{ab}^{-1}
$$

	o.L. $\operatorname{Br}(h h \rightarrow$ ZZbb \rightarrow 4lbb	no b-jet req.	with b-jet	$\boldsymbol{\varepsilon}$ (no b-jet)	$\boldsymbol{\varepsilon}$ (b-jet)
$\mathbf{4} \boldsymbol{\mu}$	161	61	12.1	38%	7.4%
$\mathbf{4 e}$	161	40	7.7	25%	4.8%
Tot	322	101	20	31%	6.2%

- forward b-tagging can be an important ingredient of the analysis, need to test configuration with fwd dipole
- big impact from lepton isolation cut (not presented here), need to optimise isolation criteria

Vacuum stability regions

We are at the edge between stability and instability, in a quite narrow region of the meta-stability region (many theoretical speculations are starting, why are we there?)

Vacuum stability

$$
V=\frac{1}{2} \mu^{2} \Phi^{2}+\frac{1}{4} \Lambda(\text { scale }) \Phi^{4}
$$

$$
\begin{gathered}
\lambda(\mu) \sim F\left(y_{t}, \lambda\left(m_{H}\right)\right)=F^{\prime}\left(m_{t}, m_{H}\right) \\
\lambda\left(m_{H}\right)=\frac{m_{H}^{2}}{2 v^{2}}=0.1301 \pm 0.0007
\end{gathered}
$$

Dario Buttazzo ${ }^{a, b}$, Giuseppe Degrassi ${ }^{c}$, Pier Paolo Giardino ${ }^{a, d}$, Gian F. Giudice ${ }^{a}$, Filippo Sala ${ }^{b, e}$, Alberto Salvio ${ }^{b, f}$, Alessandro Strumia ${ }^{d}$

The modification of λ with the energy implies a dependence $\wedge(\Phi)$. The Higgs potential has a shape that is more complex than just $\lambda \Phi^{4}$.

See Buttazzo et al. and talk from V. Branchina
(Moriond QCD 2014)

