Probing Anomalous HVV Couplings at the FCC-eh

M. Altinli 1, I. Turk Cakir 2, O. Bolukbasi 2, A. Senol 3, S. Kartal 1, O. Cakir 4
1 Istanbul University, 2 Giresun University, 3 Abant Izzet Baysal University, 4 Ankara University

Abstract
In this study, we have investigated Higgs-gauge boson couplings via $e^+ e^- \rightarrow e^+ e^- h$ at the Future Circular electron-hadron Collider (FCC-eh). The bounds on the anomalous HVV couplings in this process are obtained by using MadGraph5 framework at the FCC-eh. The results are compared with the results obtained at the Large Hadron electron Collider (LHeC).

Introduction
The recent discovery of a new boson with a mass of 125 GeV at the CERN LHC [1, 2] matches many of the properties of the Higgs boson from the Higgs mechanism within the Standard Model (SM). Searching for the properties of this new boson can extend our knowledge of the electroweak symmetry breaking (EWSB) sector. This search has also very important consequences on theories beyond the SM. From the theoretical side, there could be different EWSB scenarios in which the Higgs boson could be elementary and weakly interacting [3] or composite and related to a new strongly interacting sector [4]. Effects of EWSB scenarios on the phenomenology of the Higgs boson can be parameterized in terms of an effective Lagrangian at the electroweak scale. In this framework, the corrections from higher dimensional operators to the Higgs boson (H) couplings to the gauge bosons (V) can be expressed through an effective Lagrangian.

Effective operators give rise to anomalous HVV couplings [5]. The final parameters for electron energy 60 GeV and proton energy 7 TeV were obtained by using MadGraph5 framework at the FCC-eh.

\[\mathcal{L}_{\text{eff}} = \frac{1}{\sqrt{s}} \left[\frac{1}{2} \mathcal{B}_{\gamma \gamma} \partial_{\mu} F_{\gamma \gamma} \partial_{\nu} h - \frac{1}{4} \mathcal{B}_{VV} F_{\mu \nu} F^{\mu \nu} h - \frac{1}{4} \mathcal{B}_{\gamma h} \partial_{\mu} F_{\gamma h} \partial_{\nu} h - \frac{1}{4} \mathcal{B}_{W V h} F_{\mu \nu} W^{\mu \nu} h - \frac{1}{4} \mathcal{B}_{Z V h} F_{\mu \nu} Z^{\mu \nu} h \right] \]

Where $V_{\mu \nu}$ is the field strength tensor and V_i is the vector field. Effective couplings are denoted by \mathcal{B}_{ij}.

H$\gamma \gamma$, HZZ and HγZ Couplings
The couplings appearing in the effective Lagrangian are given as in Table 1. The related diagrams for the $e^+ e^- \rightarrow e^+ e^- H$ which contain H$\gamma \gamma$, HZZ and HγZ interaction vertices are shown in Figure 1.

Table 1. Coupling constants of the interactions of a Higgs boson with a vector boson pair.

<table>
<thead>
<tr>
<th>\mathcal{B}_{ij}</th>
<th>$\gamma \gamma$</th>
<th>VV</th>
<th>$h\gamma$</th>
<th>$W V h$</th>
<th>$Z V h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}_{\gamma \gamma}$</td>
<td>$\gamma \gamma$</td>
<td>VV</td>
<td>$h\gamma$</td>
<td>$W V h$</td>
<td>$Z V h$</td>
</tr>
<tr>
<td>\mathcal{B}_{VV}</td>
<td>$\gamma \gamma$</td>
<td>VV</td>
<td>$h\gamma$</td>
<td>$W V h$</td>
<td>$Z V h$</td>
</tr>
<tr>
<td>$\mathcal{B}_{h \gamma}$</td>
<td>$\gamma \gamma$</td>
<td>VV</td>
<td>$h\gamma$</td>
<td>$W V h$</td>
<td>$Z V h$</td>
</tr>
<tr>
<td>$\mathcal{B}_{W V h}$</td>
<td>$\gamma \gamma$</td>
<td>VV</td>
<td>$h\gamma$</td>
<td>$W V h$</td>
<td>$Z V h$</td>
</tr>
<tr>
<td>$\mathcal{B}_{Z V h}$</td>
<td>$\gamma \gamma$</td>
<td>VV</td>
<td>$h\gamma$</td>
<td>$W V h$</td>
<td>$Z V h$</td>
</tr>
</tbody>
</table>

Figure 1. Feynman diagrams of $e^+ e^- \rightarrow e^+ e^- h$ process, that include H$\gamma \gamma$, HZZ and HγZ vertices.

Analysis
Invariant mass distributions of two b-jets are shown in Figure 2 and Figure 3. Figure 3 is for the processes with left-handed (80%) polarized electron while Figure 2 is for the processes without polarisation. For the signal processes, we take $c_{S P} = 0.01$ while all other couplings are zero. We have used 1 ab^{-1} integrated luminosity and we applied cuts $p_T > 60 \text{ GeV}$, $4.5 < \eta < 0$, $-0.5 < \Delta B_{\text{bb}} < 2$ and $|\eta^{|e^{-}}| < 2$ to the electron and jets. We take into account background $B \equiv e^+ e^- H, e^+ e^- Z, e^+ e^- W^+ W^-(t)$, $e^+ e^- t$. In Figure 4 and 5, the statistical significance for anomalous coupling values, -0.05 and 0.05, are shown at LHeC and FCC-eh for 1 ab^{-1} luminosity.

Results
We used the number of the signal (S) and background (B) events to calculate the statistical significance defined as

\[SS = \sqrt{2[4(S + B) \ln \left(\frac{S + B}{B} \right) - 5]} \]

In Figure 4 and 5, the statistical significance for anomalous coupling values, -0.05 and 0.05, are shown at LHeC and FCC-eh for 1 ab^{-1} luminosity.

Conclusion
We have investigated couplings relevant to anomalous HVV vertices at the LHeC and the FCC-eh. The results show that LHeC and FCC-eh provide a better sensitivity to the $e^+ e^-$, $e^+ e^-$ couplings. We find that the FCC-eh collider is more sensitive to the anomalous couplings than LHeC due to higher center of mass energy, however, the polarisation possibility of the electron beam has an advantage for charged/neutral weak current process for both cases. Our results can be compared with the results from experimental bounds [8] and phenomenological results [9]. The ep colliders will complement these searches.

References