

Status of High Field Magnet R&D for CEPC-SPPC

Qingjin XU

On behalf of the SPPC magnet working group

Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS)

CEPC-SPPC

CEPC is an 240-250 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70-150 (Upgrading phase) TeV pp collider **SPPC**, to study the new physics beyond the Standard Model.

SPPC Accelerator and Magnets

0,95 U, FCC WeeK, Berin, May 29 - June 22017

SPPC Design Scope (201701 version)

Baseline design

Tunnel circumference: 100 km

Top priority: reducing cost!

Instead of increasing field

- Dipole magnet field: 12 T, iron-based HTS technology (IBS)
- Center of Mass energy: >70 TeV
- Injector chain: 2.1 TeV

Upgrading phase

- Dipole magnet field: 20 -24T, IBS technology
- Center of Mass energy: >125 TeV
- Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)

Development of high-field superconducting magnet technology

- Starting to develop required HTS magnet technology before applicable ironbased wire is available
- ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SPPC: stress management, quench protection, field quality control and fabrication methods, FCC WeeK, Berlin, May 29 June 2 2017

J_{e} of IBS: 2016-2025

World's first 100 m Fe-based superconductor by IEE, CAS, China (Aug. 2016)

115 m long 7-filament wire

Yanwei Ma (IEECAS)

At 4.2K, 10T, transport Jc distribution along the length of Q. XU, FCC WeeK, Berlin, May 29 - June 2 2017 the first 115 m long 7-filament Sr122 tape

The 12-T Fe-based Dipole Magnet

ROXIE 10.2

The 12-T Fe-based Dipole Magnet

ROXIE simulation results

MAIN	FIELD (T)					12.020868
MAGNE	T STRENGTH (T	/(m^(n	-1))			12.0209
NORMA	L RELATIVE MU	LTIPOL	ES (1.D-4):			
b 1:	10000.00000	b 2:	0.00000	b 3:	-0.83157	
b 4:	-0.00000	b 5:	0.92916	b 6:	-0.00000	
b 7:	0.00983	b 8:	-0.00000	b 9:	0.95010	
b10:	-0.00000	b11:	3.81956	b12:	0.00000	
b13:	-0.26538	b14:	0.00000	b15:	-0.35810	
b16:	0.00000	b17:	-0.00089	b18:	0.00000	
b19:	0.00834	b20:	-0.00000	b		
SKEW	RELATIVE MULT	IPOLES	(1.D-4):			
a 1:	0.00000	a 2:	-0.16185	a 3:	0.00000	
a 4:	0.01740	a 5:	0.00000	a 6:	-0.00710	
a 7:	-0.00000	a 8:	-0.00616	a 9:	0.00000	
a10:	-0.42248	a11:	0.00000	a12:	0.03415	
a13:	-0.00000	a14:	0.05399	a15:	-0.00000	
a16:	-0.00096	a17:	-0.00000	a18:	-0.00134	
a19:	-0.00000	a20:	-0.00189	а		

Stray field around the dipole with R= 500 mm^{1}

C. Wang, E. Kong (USTC), Q. Xu et al.

High Field Magnet R&D 2016-2018

Development of a 12T NbTi+Nb₃Sn twin-aperture (Φ10*2) magnet

High Field Magnet R&D 2016-2018

Development of the Nb₃Sn+HTS twin-aperture (Φ30*2) magnet

Quench protection for NbTi and Nb₃Sn coils (Great help from Tiina)

Thickness (μm)	Resistance (Ω)	Peak Power (w/cm^2)	Voltage (V)	Current (A)	Capacitance (mF)
50	2.85	50	221.82	77.83	10.53
50	2.85	100	313.7	110.07	10.53
100	1.425	50	156.85	110.07	21.05
100	1.425	100	221.82	155.66	21.05

A 4-fold heater: width 11mm, Heater interval 2mm, Straight section length 300mm, Material 316stainless steel.

x4)yoltage\detection:\Width4mm,_ Length 200mm, Material copper.

Superconducting Rutherford Cable R&D

Collaboration between WST, NIN, Toly Electric and IHEP

~300 m superconducting Rutherford Cable has been fabricated by Toly Electric with WST NbTi strand (Jc degradation <2%) ; Fabrication of Nb₃Sn cable and Bi-2212 cable is ongoing.

Superconducting Rutherford Cable R&D

Nb_3Sn cable fabrication with WST strand

Y. Zhu (WST), Y. Zhao (Toly) et al.

	股数	绞缆角	节距/mm	尺寸/mm	填充系数	Ic损降/%					Ic损	降(总	体来和	昏)					
				8.22*1.48	81.3%	3.64%	5.00	1 22				1 22	4.58						
\$				7.87*1.48	85%	3.43%	4.50	4.55		2 77		4.33)			4.03		
多	18	17 1 2 0	50	7.95*1.52	81.9%	1.28%	3.50		3.64	3.77	3.43		3.47						
数		17.15	7.13 50	7.83*1.48	85.4%	4.33%	3.00											3.04	
及				7.87*1.44	87.3%	4.58%	\$ 2.50												
<u></u>					7.87*1.52	82.7%	1.41%	₩ 2.00									_		
江				15.38*1.50	86.5%	4.63~6.70	联 1.50								1.41	1.28			
能				15.29*1.49	87.5%	8.96~10.92	1.00									\bigcup			
	36	36	18.46°	93	15.23*1.45	90.3%	5.76~9.36	0.50											
				15.19*1.44	91.2%	8.71~13.17	0.00	1	2	2		_	6	7	0	0	10		
				15.16*1.39	94.7%	9.43~11.31		1	2	5	⁴ Gı	roup	0	/	0	J	10		

Superconducting Rutherford Cable R&D

Bi-2212 cable fabrication with NIN strand

Q. Hao (NIN), Y. Zhao (Toly) et al.

Parameter	Cable 1	Cable 2
Diameter Φ (mm)	1	1
Wire processing	300℃退火	200℃退火
Number of Strands	8	8
Cable size (mm ²)	1.90×4.77	1.78×4.21
Filling factor	70.5%	85.2%
Length	2.5米	2米

◆成功绞制两根8线电缆
◆绞制过程中电缆变形均匀
◆每根线材外观完整无破损
◆线材芯丝无明显破损

Infrastructure for Model Magnet Fabrication

A new winding machine, VPI system, furnace, bladder & pump,

Infrastructure for Model Magnet Fabrication

A dummy Coil Fabrication

Domestic Collaboration

"Applied High Temperature Superconductor Collaboration (AHTSC)" was formed in Oct. 2016. >13 related institutes & companies and 50 scientists & engineers in China joined AHTSC, working together for the advanced HTS R&D and Industrialization.

- Goal: 1) To increase the J_c of IBS by 10 times, reduce the cost to 20 Rmb/kAm @ 12T & 4.2K in 10 years, and realize the industrialization of the conductor; 2) To reduce the cost of ReBCO and Bi-2212 conductors to 20 Rmb/kAm @ 12T & 4.2K in 10 years; 3) Realization and Industrialization of iron-based SRF technology.
- Working groups: 1) Fundamental science investigation; 2) IBS conductor R&D; 3) ReBCO conductor R&D; 4) Bi2212 conductor R&D; 5) performance evaluation; 6) Magnet and SRF technology.
- Collaboration meetings: every 2~3 months, to report the progress and discuss plan for next months.

执行委员	民会 (姓氏拼音排序)	实用化高温超导材料产学研合作组成立大会。	顾问委员会	(姓氏拼音排序)
陈仙辉	中国科技大学		甘子钊	北京大学
蔡传兵	上海大学/		李言荣	电子科技大学
	上创超导		林良真	中科院电工研究所
李贻杰	上海交通大学/ 上海招导		万元熙	中国科学技术大学
口公住	上19년5		吴茂昆	台湾中研院
一つ1,11中	中斜远电工师无例		薛其坤	洁华大学
王贻芳	中科院高能物理所			
水亚洋	亜北方名院		玩俗但	中国科子权不人子
эм т т+	凹北伯巴阮		赵忠贤	中科院物理研究所
周兴江	中科院物理研究所	A CARL REAL PARAMER, BORN May 29 - June 2 20 - 7 - 20 - 7	周廉	西北有色院

IHEP & CERN Collaboration

March 2017, Launch of CERN-China IHEP collaboration for HiLumi LHC

For now

- ➢ IHEP, IMP, WST and ASIPP will work together on the CCT magnet (D2) and HTSCL development for HL-LHC.
- ➢ Funding application is ongoing from MOST, NSFC and CAS.
- In Future: Leading more activities for the HL-LHC collaboration with expected funding.

Benefit we are expecting from the HL-LHC collaboration

Speed up R&D process of the high field magnet technology in China.

MEMORANDUM OF UNDERSTANDING FOR COLLABORATION IN THE HIGH LUMINOSITY LHC PROJECT AT CERN

BETWEEN: THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ("CERN"), an Intergovernmental Organization having its seat at Geneva, Switzerland, as the Host Organization of the High Luminosity LHC project ("HL-LHC Project");

AND: THE INSTITUTES, LABORATORIES, UNIVERSITIES AND THEIR FUNDING AGENCIES AND OTHER SIGNATORIES OF THIS MEMORANDUM OF UNDERSTANDING,

Hereafter "Participant" and collectively "Participants"

CONSIDERING:

That CERN, an Intergovernmental Organization, is a leading global laboratory in particle physics, providing for collaboration of a pure scientific and fundamental character, with participation by scientific institutes from all over the world;

That *<INSTITUTE name>* wishes to contribute to the HL-LHC Project, which aims at maximizing the performance of the LHC accelerator by increasing its luminosity, and that *<INSTITUTE name>* has internationally recognized experience in fields that are relevant to the HL-LHC Project;

That the Participants will derive mutual benefits from their collaboration in the HL-LHC Project,

AGREE AS FOLLOWS:

EDMS 17655515 V1.0

IHEP & CERN Collaboration

March 2017, Launch of CERN-China IHEP collaboration for HiLumi LHC

Summary

- SPPC latest baseline: 12 T all-HTS (iron-base superconductor, IBS) magnets with 100 km circumference and > 70TeV center-of-mass energy. Cost reduction is the top priority!
- SPPC Upgrading phase: 20~24 T all-HTS (IBS) magnets with the same tunnel and 125~150 TeV center-of-mass energy.
- Starting to develop HTS magnet technology before applicable ironbased wire is available: ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SPPC.
- Domestic and international collaborations are being formed to pursue the advanced HTS superconductor and magnet R&D.

International Press of Boston

www.intlpress.com

From the Great Wall to the Great Collider

China and the Quest to Uncover the Inner Workings of the Universe

by Steve Nadis & Shing-Tung Yau

The story of the enchanting new physics that lies beyond the Higgs boson discovery — and the gargantuan particle accelerator that might get us there.

