Update on simulation of new RF "fingers" using ACE3P

Kyrre Sjobak

WP2 meeting, August $16^{\text {th }} 2016$

Outline

1 Introduction

2 Geometry

3 Modes

4 Wake

5 Conclusions

New LHC RF shielding

- New RF contacts geometry being considered for HL-LHC
- Design with fixed extremities

Photos by C. Vollinger

Measurements

■ Wire measurements by C. Vollinger et. al., presented at:

- WP2 meeting no. 69, Jun 2016 https://indico.cern.ch/event/525677/
- Impedance meeting Dec. 2014 http://indico.cern.ch/event/358583/
- For 2-convolution bellows, observe that high- Q resonances show up when the outer bellow is mounted.
- For 3-convolution bellows, coupling of resonances to inner volume disappear when bellow is mounted.

Earlier simulations

- Presentations:
- O. Berrig \& B. Salvant: "Beam impedance of 63 mm VM with unshielded bellows", 6/11-2012
- Na Wang \& B. Salvant: "Impedance calculations for the new LHC triplet shielded bellows and the changes linked to 5th axis in the LHC", Impedance meeting 18/06-2015 http://indico.cern.ch/event/403089/
- K. Sjobak \& B. Salvant: "ACE3P for RF finger simulation", Impedance meeting 10/08-2015 http://indico.cern.ch/event/437858/
■ B. Salvant \& E. Metral: "HL-LHC Triplet "RF fingers", WP2 meeting 29/03-2015
https://indico.cern.ch/event/512380/
■ Using CST, HFSS, ACE3P, ABCI
- All have problems with the complex geometry

Why ACE3P

■ Unstructured conformal tetrahedal mesh

- Scalable to huge problems (especially in time domain)

■ Can do time domain, eigenmodes, S-parameters and more with the same tools (and the same mesh)

- Developed for accelerator physics by SLAC
- Requires external CAD program \& mesh generator Cubit Trellis by Sandia CSimsoft
- CERN has 2 floating Trellis licenses, users in ABP and RF

■ Uses external pre- and postprocessing tool acdtool

Geometry

- Modeling the 3 convolution bellow, 111 mm inner diameter
■ Partially successful import of CAD model from CATIA via SAT
- Could not modify the resulting ACIS geometry
- Redrafted geometry in Trellis, compared (overlay) with imported
- Parameterized geometry
- Method:

1 Draw convolutions and sweep
2 Remove "material" from holes
Finger thickness is constant - not constant-angle sector!
3 Add flanges, bellow, beampipes

- Simplifications:

Inner bellow ($\mathrm{d}=0.1 \mathrm{~mm}$) approximated as 0 mm , no outer corrugations

Resonant modes

■ Find a "double" set of modes

- Inner volume TE- and TM-like modes
- Outer volume TEM-like modes
■ Outer modes couple weakly to the beam
- Offset $\mathrm{R} / \mathrm{Q}<1 \mathrm{e}-5$

$$
(\Delta x=5 \mathrm{~mm})
$$

- Frequency varies slightly between coupled- and uncoupled case
- Also some dependency on LBP

Mode	f_{1}	f_{2}	f_{3}	$(R / Q)_{2}$
TEM_{010}		0.732	0.742	$6.4-05$
TEM_{110}		1.008	0.917	$1 \mathrm{e}-10$
TEM_{210}		1.568	1.278	$2 \mathrm{e}-10$
TE_{111}	1.600	1.585	1.572	$2 \mathrm{e}-8$
TM_{010}	2.011	2.013	2.011	0.625

Frequencies in $\mathrm{GHz}, R / Q=V^{2} /(\omega U)[\Omega]$
Subscript key:
1 Separated, LBP=150 mm
2 Separated, LBP=300 mm
3 Combined inner and outer, LBP $=300 \mathrm{~mm}$
■ Lots of "beampipe modes" (TM/TE ${ }_{m, n, p}, p>0 / 1$)

Mode Gallery - TEM 010

Mode Gallery - TEM 110

Mode Gallery - TE 111

Mode Gallery - TM_{010}

Effect of stretching the structure

■ Use geometry parametrization
■ Would expect more coupling if inner- and outer resonances cross

- They do for large angles; but mode symmetry is different
- Dependency on vacuum bellow radius and corrugations not studied

deg	5	10	20	40	60
mm	39.3	38.3	34.1	19.6	0.0

Longitudinal wake

■ Longitudinal wake

- Complete structure vs. only inner part: Very similar
- TM_{010}-like mode found at expected frequency
- Stretching out \Rightarrow amplitude drops
- Analytical model $\left(\lim \beta \gamma^{2} \rightarrow 1\right)$:

$$
Z_{L} \propto \mathrm{i} * f * L * \ln \left(\frac{b^{\prime}}{b}\right)
$$

From "Selection of formulae concerning proton storage rings" by Guignard, Gilbert (1977)

- Transverse wake: Some technical difficulties, next time...

Conclusions

- Built a very useful parameterized geometry model

■ Did not observe any significant coupling

- Frequencies of modes not very stretch-dependent

■ Lowest relevant longitudinal mode at $\approx 2 \mathrm{GHz}$.

- $\Im\left(Z_{L}(f)\right)$ behaves as expected
- Sideways deflection
- ACE3P Can in principle solve mechanical system
- Difficult to deform vacuum mesh correctly
- Maybe just shift parts of the mesh?
- Fix transverse wake calculation
- 2-convolution bellows
- Direct simulation of wire measurements

Thanks to Benoit Salvant, Christine Vollinger, Oleksiy Kononenko,
Thomas Kaltenbacher, and HSS section.

Conclusions

- Built a very useful parameterized geometry model
- Did not observe any significant coupling
- Frequencies of modes not very stretch-dependent

■ Lowest relevant longitudinal mode at $\approx 2 \mathrm{GHz}$.

- $\Im\left(Z_{L}(f)\right)$ behaves as expected

Outlook

- Sideways deflection
- ACE3P Can in principle solve mechanical system
- Difficult to deform vacuum mesh correctly
- Maybe just shift parts of the mesh?
- Fix transverse wake calculation
- 2-convolution bellows
- Direct simulation of wire measurements

Conclusions

- Built a very useful parameterized geometry model

■ Did not observe any significant coupling

- Frequencies of modes not very stretch-dependent

■ Lowest relevant longitudinal mode at $\approx 2 \mathrm{GHz}$.

- $\Im\left(Z_{L}(f)\right)$ behaves as expected

Outlook

- Sideways deflection
- ACE3P Can in principle solve mechanical system
- Difficult to deform vacuum mesh correctly
- Maybe just shift parts of the mesh?
- Fix transverse wake calculation
- 2-convolution bellows
- Direct simulation of wire measurements

Thanks to Benoit Salvant, Christine Vollinger, Oleksiy Kononenko, Thomas Kaltenbacher, and HSS section.

Mech. drawing numbers

■ LHCVSMPA0026 - sheet with holes
■ LHCVSMPA0025 - separation rings
■ LHCVSMPA0018 - general "exploded view" and overview
■ LHCVSMP0021 - Middle piece
■ LHCVSMPA0020 - Curved flange
■ LHCVSMPA0022 - Body contact RF
■ LHCVSMPA0023 \& LHCVSMPA0024 - Half flanges
■ LHCVSMPA0017 \& LHCVBU___0038 - Vacuum bellow

Transverse impedance spectrum (not trusted)

More modes and stretch dependence

