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Stroke is the second leading cause of disability in Europe after
ischaemic heart disease (IHD) and is the sixth leading cause worldwide
(See Background Paper 6.6, Table 6.6.7). Women have a higher lifetime risk
of stroke than men: about one in five women (20% to 21%) and one in six
men (14% to 17%) will suffer a stroke in their lifetime, according to a
2006 study.°® The prevalence of stroke events is expected to increase
across the globe as the global population aged over 65 increases.”8 The
number of stroke events in Europe is projected to rise from 1.1 million in
2000 to 1.5 million per year by 2025, largely due to the ageing population.?
In the EU27 countries, the annual economic cost of stroke is an estimated
€27 billion: €18.5 billion (68.5%) for direct costs and €8.5 billion (31.5%) for
indirect costs. An additional €11.1 billion is calculated for the value of
informal care.1°

http://www.who.int/medicines/areas/priority medicines/Ch6 6Stroke.pdf
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Cells extract energy from nutriments (glucose) and oxygen to
produce their energy currency (ATP).

The brain is energetically efficient when compared to man-
made computing devices.

The brain is an expensive organ from our body’s perspective.
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Cells extract energy from nutriments (glucose) and oxygen to
produce their energy currency (ATP).

The brain is energetically efficient when compared to man-
made computing devices.

The brain is an expensive organ from our body’s perspective.

Most brain energy is spent on neural communication.
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Abstract

Energy use in the brain constrains its information processing power, but only about half the brain’s energy consumption is
directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain’s
energy has been scarce. For the first time, we investigated the energy use of the brain’s main non-signalling tasks with a
single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices
with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a
modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid
synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption.
In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to
brain energy use in vivo, and how they might differ in the mature brain.
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ATP, brain development, brain slice, energy metabolism, lipids
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The Expensive-Tissue
Hypothesis

The Brain and the Digestive
System in Human and Primate
Evolution’

by Leslie C. Aiello and
Peter Wheeler

Brain tissue is metabolically expensive, but there is no signifi-
cant correlation between relative basal metabolic rate and rela-
tive brain size in humans and other encephalized mammals. The
expensive-tissue hypothesis suggests that the metabolic require-
ments of relatively large brains are offset by a corresponding
reduction of the gut. The splanchnic organs (liver and gastro-
intestinal tract) are as metabolically expensive as brains, and the
gut is the only one of the metabolically expensive organs in the
human body that is markedly small in relation to body size. Gut
size is highly correlated with diet, and relatively small guts

are compatible only with high-quality, easy-to-digest food. The
often-cited relationship between diet and relative brain size is
more properly viewed as a relationship between relative brain

size and relative gut size, the latter being determined by dietary
1 . N D R D T -

Y
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Wood on the analysis of the postcranial fossils from Olduvai
Gorge. She has published (with M. C. Dean) An Introduction to
Human Evolutionary Anatomy (London: Academic Press, 1990),
“Allometry and the Analysis of Size and Shape in Human Evolu-
tion”’ (Journal of Human Evolution 22:127—47), “The Fossil Evi-
dence for Modern Human Origins in Africa: A Revised View”
(American Anthropologist 95:73—96), (with R. I. M. Dunbar)
“Neocortex Size, Group Size, and the Evolution of Language”
(CURRENT ANTHROPOLOGY 34:184—93), and (with B. A. Wood)
“Cranial Variables as Predictors of Hominine Body Mass” (Ameri-
can Journal of Physical Anthropology, in press).

PETER WHEELER is Director of Biological and Earth Sciences,
Liverpool John Moores University. He was born in 1956 and edu-
cated at the University of Durham. His research focuses on physi-
ological influences on human evolution and thermobiology.
Among his publications are “The Influence of Bipedalism on the
Energy and Water Budgets of Early Hominids’’ (Journal of
Human Evolution 21:107—-15), “The Influence of the Loss of
Functional Body Hair on the Energy and Water Budgets of Early
Hominids”’ (Journal of Human Evolution 23:379—88), ““The Ther-
moregulatory Advantages of Large Body Size for Hominids Forag-
ing in Savannah Environments”’ (Journal of Human Evolution 23:
351—62), and “The Influence of Stature and Body Form on
Hominid Energy and Water Budgets: A Comparison of Australo-
pithecus and Early Homo Physiques” (Journal of Human Evolu-
tion 24:13—28).

The present paper was sumitted in final form 15 vI 94.

Much of the work that has been done on encephalization
in humans and other primates has been oriented toward
why questions—why different primate taxa have differ-
ent relative brain sizes or why the human line has un-
dergone such a phenomenal increase in brain size during
the past 2 million years. Hypotheses that have been put
forward to answer these questions primarily invoke
socio-ecological factors such as group size (Aiello and
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Energetics and the evolution of human brain size

Ana Navarrete!, Carel P. van Schaik! & Karin Isler

The human brain stands out among mammals by being unusually
large. The expensive-tissue hypothesis' explains its evolution by
proposing a trade-off between the size of the brain and that of
the digestive tract, which is smaller than expected for a primate
of our body size. Although this hypothesis is widely accepted,
empirical support so far has been equivocal. Here we test it in a
sample of 100 mammalian species, including 23 primates, by
analysing brain size and organ mass data. We found that, control-
ling for fat-free body mass, brain size is not negatively correlated
with the mass of the digestive tract or any other expensive organ,
thus refuting the expensive-tissue hypothesis. Nonetheless, consist-
ent with the existence of energy trade-offs with brain size, we find
that the size of brains and adipose depots are negatively correlated
in mammals, indicating that encephalization and fat storage are
compensatory strategies to buffer against starvation. However,
these two strategies can be combined if fat storage does not unduly
hamper locomotor efficiency. We propose that human encephaliza-
tion was made possible by a combination of stabilization of energy
inputs and a redirection of energy from locomotion, growth and
reproduction.

Brains are energetically expensive®. The human brain is about three

Data). In this analysis, it is crucial to control for body size, but the u
measure taken for this, body mass, is highly affected by variation ir
size of adipose depots. This variation may confound or even reverse
direction of correlations among organs (Supplementary Fig. 2
Supplementary Table 4b). Here, we therefore used fat-free body r
as the best proxy for body size.

Contrary to the predictions of the expensive-tissue hypothesis
found no negative correlations between the relative size of the b
and the digestive tract, other expensive organs or their combined
among mammals or within non-human primates, controlling for
free body mass, even though statistical power was sufficient to de
these negative correlations if they existed (see Table 1). We also did
find any trade-offs among other expensive organs (Fig. 1). T
results therefore refute the expensive-tissue hypothesis as a ger
principle to explain the interspecitic variation of relative brain
in mammals. In our view, this finding reduces the plausibility of
argument that human encephalization was made possible by a re
tion of the digestive tract™”.

Energy trade-offs with other tissues that are less expensive but
abundant” may nonetheless explain part of brain size variation.
instance, adipose depots make up an appreciable proportior
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Neurons in the rat visual pathway trade information for energy
savings.

How is this mechanism affected by the rest of the local
circuit”

|s this a generic design principle in the brain?
How does it arise?

Can it be applied outside of the brain?
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» Energy as a signal for the brain's immune system
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Pio del Rio-Hortega
(1882 — 1945)

del Rio-Hortega, Bol de la Soc esp de biol 1919
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ATP, the energy currency of cells, triggers a
potassium current in the brain’s immune cells

This is a small potassium
current across the membrane

2 mM ATP

20 pAL

60 s

Laser damage

{

It is mediated by the same
receptor than the centripetal
movement of the cells

This current is mediated by a two-pore-domain

potassium channel called THIK-1
(TWIK-related halothane-inhibitable K+ channel-1)
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Blocking this potassium channel abolishes
the baseline immune surveillance of the brain

» Motility: processes extensions + retractions (normalised by
the cell area).
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» The energy currency of cells (ATP) plays a key role in
coordinating the response of the brain’'s immune cells to
acute damage.

» We have identified one of the components of the machinery
that controls the baseline immune surveillance of the brain.

» Immune surveillance of the brain might be compromised
during surgeries using volatile anaesthetics and in ageing.
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» CERN as a model for the neurosciences



Acknowledgments

@ KAUST, Saudi Arabia
Pierre Magistretti

@ EPFL, Switzerland
Igor Allaman

@ University of Zurich, Switzerland

Bruno Weber

@ University College London, UK
David Attwell
Lorena Arancibia Carcamo
Elisabeth Engl|
Vasiliki Kyrargyri
Christian Madry

@ Imperial College London, UK
Julia Harris

@ National Institute of Neuroscience, Japan

Shinichi Kohsaka

UNIVERSITE
DE GENEVE

FACULTE DES SCIENCES
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