

HL-LHC Magnet components and assemblies

E. Todesco, F. Savary, on behalf of WP3 and WP11

See also the presentation from F. Savary in 2015 https://indico.cern.ch/event/387162

31st October 2016 – Instituto Superior Técnico, Lisbon

FOREWORD

- HL LHC magnets are within WP3 and WP11
 - Different timeline (as shown by L. Rossi)
 - WP11: to be installed in 2019-20
 - WP3: to be installed in 2024-25
 - Together, they represent ¼ of the HL-LHC budget
 - About one third of magnets comes from in kind contributions or collaborations agreements
 - So this fraction is not steered directly by CERN
 - 7 types of new magnets, all built in industry
 - Except 11 T (CERN with industry personnel), Q1/Q3 (US labs)
 - 7 labs participating (LBNL, BNL, FNAL, KEK, CEA, INFN, CIEMAT)
- Cryostats discussed by D. Duarte Ramos

Nb₃Sn MAGNETS

■ Two types of Nb₃Sn magnets: 11 T and the triplet

- Both with wind and react technique
- Both with peak field of 11.5 T
- Lengths and quantities
 - 4.2 m (Q1/Q3) 20 units from US (90 coils)
 - 5.5 m (11 T) 6 units (30 coils)
 - 7.15 m (Q2a Q2b) 10 units (50 coils)
- Apertures
 - 60 mm for 11 T (LHC arc)
 - 150 mm for triplet (IR region)

D1 cross-section [M. Karpinnen F. Savary et al.]

QXF cross-section [P. Ferracin, G. Ambrosio et al.]

Nb₃Sn MAGNETS

- Coil manufacturing is the dominant part (time, budget)
 - Same technology: winding, reaction at 650 C, impregnation, instrumentation
- Mechanical structure is different
 - 11 T: stainless steel collars, loading with collaring press
 - Triplet: Al shell loaded with bladder and key
- Production strategy:
 - 11 T: at CERN with manpower from industry
 - Triplet: prototypes at CERN, we are exploring the option of manufacturing of series in industry

NB-Ti MAGNETS

- Two main magnets: D1 and D2
 - Both with Nb-Ti classical technology
 - Rutherford cable
 - Bore field of 4.5 T to 5.6 T
 - Lengths and quantities
 - 6.2 m (D1) 6 units from Japan
 - 7.8 m (D2) 6 units (prototype from INFN)
 - Apertures: 150 mm for D1 105 mm for D2
 - Mechanical structure
 - Iron yoke (D1)
 - Self standing collars (D2)

D1 cross-section [T. Nakamoto, M. Sugano et al.]

D2 cross-section [P. Fabbricatore, S. Farinon]

CORRECTOR MAGNETS: NESTED

- Nb-Ti technology, sector coil Rutherford cable
 - Nested correctors: bore field of 2.1 T in each plane Lengths and quantities
 - 1.2 m (short) 6 units (prototype from CIEMAT)
 - 2.1 m (long) 12 units
 - 150 mm aperture
 - Mechanical structure
 - Self standing collars, double collaring

CORRECTOR MAGNETS: HIGH ORDER

- Nb-Ti technology, superferric design
 - High order correctors: peak field of 2-3 T (prototypes by INFN)
 - Lengths and quantities
 - About 1 m (quadrupole) 6 units
 - About 0.5 m (dodecapole) 6 units
 - About 0.1 m (sextupole, octupole, decapole) 6*7 units
 - 150 mm aperture

CORRECTOR MAGNETS: CANTED

Nb-Ti technology, canted design

 High order correctors: peak field of 2-3 T (prototypes by INFN)

- 2 m long, 12 units
- 105 mm aperture

MBCRD cross-section [G. Kirby, J. Rysti]

Winding tests of the canted model [G. Kirby, J. Rysti, J. Mazet, et al.]

LARGE APERTURE Q4 DEVELOPMENT

- A large aperture Q4 (90 mm) was in the initial baseline (called MQYY)
 - Series removed in June 2016 to cope with budget reduction
 - Activities going on:
 - Short model development from CEA
 - Construction of two prototypes within QUACO EU initiative

MQYY [J. M. Rifflet, M. Segreti, et al

COMPONENTS

- Superconducting strand
 - Nb₃Sn: Procured by CERN and US collaboration, two producers
 - Nb-Ti: D1 and D2 reuse LHC cable, nested reuses SLHC cable, superferric and canted use existing strands
- For 11 T and triplet, CERN (and US) procure all main components
- For Nb-Ti main magnets and correctors, industry will be probably in charge of component procurement
- CERN will provide raw material (both magnetic and non magnetic steel) to guarantee magnetic performance and to minimize costs

COMPONENTS

- Non exhaustive list of components
 - Coil:
 - Cable insulation
 - Impregnation resin
 - Winding poles
 - End spacers
 - Wedges
 - Quench heaters
 - Magnet:
 - Collars
 - Yoke laminations
 - Cold mass:
 - End domes
 - SS half shells

CONCLUSION

- We have a challenging project requiring substantial involvement of the industry
 - Effective partnership is crucial for the success
 - Several challenges
 - Some new tecnologies to be applied for the first time in high energy accelerator magnets (Nb₃Sn, plus canted magnet)
 - More critical aspects
 - Relatively small series, little time to react
 - Many different magnets
 - Timeline of procurement
 - Many collaborations, interfaces management
 - Exchange of information (see www.cern.ch/hilumi/wp3
 https://project-hl-lhc-industry.web.cern.ch

A summary from F. Savary about status in 2015

Legend:

We are covered

We need more suppliers

We desperately need suppliers

Item #	Description	Raw material	2018	Later	What is challenging
1	Coil keys	AISI 316 L – DIN 1.4435			Machining (accuracy & elasticity)
2	End spacers	SLS - AISI 316 L - DIN 1.4435			3D-metrology, electrical insulation is needed
3	Saddles	Impregnated glass fiber as per IEC/EN 61212-3-1 EP-GC22			5-axes machining, GC22, accuracy
4	Removable pole	TA6V annealed (Ti6Al4V; 3.7165)			Accuracy & material
5	Wedges - precision profiles	Aluminum oxide dispersion strengthened copper (ODS)			Accuracy, material ODS
6	Quench heaters	Polyimide – St.Steel – Copper			Flexible Printed Circuits
7	Collars	YUS-130S (High Mn Steel)			Fine blanking, accuracy
8	Collaring keys	AISI 316 L – DIN 1.4435			Accuracy
9	Yoke laminations & inserts	Low carbon steel			Fine blanking, accuracy
10	Heat exchanger tube	Oxygen Free Cu - UNS C10200			Cu quality
11	Bus bars - hollow bars	Oxygen Free Cu - UNS C10200			Length, Cu quality
12	Lyras	Oxygen Free Cu - UNS C10200			Cu quality
13	Shells	AISI 316 LN - DIN 1.4429			Raw material, thickness, accuracy
14	End covers	AISI 316 LN - DIN 1.4429			Raw material, accuracy

