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HL-LHC
Magnet components and assemblies

E. Todesco, F. Savary, on behalf of WP3 and WP11

See also the presentation from F. Savary in 2015 
https://indico.cern.ch/event/387162

31st October 2016 – Instituto Superior Técnico, Lisbon

https://indico.cern.ch/event/387162
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FOREWORD

 HL LHC magnets are within WP3 and WP11
 Different timeline (as shown by L. Rossi)

 WP11: to be installed in 2019-20

 WP3: to be installed in 2024-25

 Together, they represent ¼ of the HL-LHC budget

 About one third of magnets comes from in kind 
contributions or collaborations agreements 
 So this fraction is not steered directly by CERN

 7 types of new magnets, all built in industry
 Except 11 T (CERN with industry personnel), Q1/Q3 (US labs)

 7 labs participating (LBNL, BNL, FNAL, KEK, CEA, INFN, CIEMAT)

 Cryostats discussed by D. Duarte Ramos

E. Todesco 2
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Nb3Sn MAGNETS

 Two types of Nb3Sn magnets: 11 T and the 
triplet

 Both with wind and react technique

 Both with peak field of 11.5 T

 Lengths and quantities
 4.2 m (Q1/Q3) – 20 units from US (90 coils)

 5.5 m (11 T) – 6 units (30 coils)

 7.15 m (Q2a Q2b) – 10 units (50 coils)

 Apertures
 60 mm for 11 T (LHC arc) 

 150 mm for triplet (IR region)

QXF cross-section [P. Ferracin, G. Ambrosio et al.]

D1 cross-section 
[M. Karpinnen F. Savary et al.]
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Nb3Sn MAGNETS

 Coil manufacturing is the dominant part (time, 
budget)
 Same technology: winding, reaction at 650 C, 

impregnation, instrumentation

 Mechanical structure is different
 11 T: stainless steel collars, loading with collaring 

press

 Triplet: Al shell loaded with bladder and key

 Production strategy:
 11 T: at CERN with manpower from industry

 Triplet: prototypes at CERN, we are exploring the 
option of manufacturing of series in industry
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NB-Ti MAGNETS

 Two main magnets: D1 and D2
 Both with Nb-Ti classical technology

 Rutherford cable

 Bore field of 4.5 T to 5.6 T

 Lengths and quantities
 6.2 m (D1) – 6 units from Japan

 7.8 m (D2) – 6 units (prototype from INFN)

 Apertures: 150 mm for D1 - 105 mm for D2

 Mechanical structure
 Iron yoke (D1)

 Self standing collars (D2)

D1 cross-section [T. Nakamoto, M. Sugano et al.]

D2 cross-section [P. Fabbricatore, S. Farinon]
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CORRECTOR MAGNETS: NESTED

 Nb-Ti technology, sector coil Rutherford cable

 Nested correctors: bore field of 2.1 T in each plane 
Lengths and quantities
 1.2 m (short) – 6 units (prototype from CIEMAT)

 2.1 m (long) – 12 units

 150 mm aperture

 Mechanical structure
 Self standing collars, double collaring

MCBXF cross-section 
[F. Toral, J. Garcia Matos et al.]
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CORRECTOR MAGNETS: HIGH ORDER

 Nb-Ti technology, superferric design

 High order correctors: peak field of 2-3 T (prototypes 
by INFN)

 Lengths and quantities
 About 1 m (quadrupole) – 6 units 

 About 0.5 m (dodecapole) – 6 units

 About 0.1 m (sextupole, octupole, decapole) – 6*7 units

 150 mm aperture

High Order correctors cross-section [G. Volpini, M. Statera, et al.]
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 Nb-Ti technology, canted design

 High order correctors: peak field of 2-3 T (prototypes 
by INFN)

 2 m long, 12 units

 105 mm aperture

CORRECTOR MAGNETS: CANTED
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MBCRD cross-section 
[G. Kirby, J. Rysti]

Winding tests of the canted model [G. Kirby, J. Rysti, J. Mazet, et al.]
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 A large aperture Q4 (90 mm) was in the initial 
baseline (called MQYY)

 Series removed in June 2016 to cope with budget 
reduction

 Activities going on:
 Short model development from CEA

 Construction of two prototypes within 

QUACO EU initiative

LARGE APERTURE Q4 DEVELOPMENT
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MQYY [J. M. Rifflet, M. Segreti, et al.]
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COMPONENTS

 Superconducting strand
 Nb3Sn: Procured by CERN and US collaboration, two 

producers
 Nb-Ti: D1 and D2 reuse LHC cable, nested reuses SLHC cable, 

superferric and canted use existing strands

 For 11 T and triplet, CERN (and US) procure all main 
components

 For Nb-Ti main magnets and correctors, industry will 
be probably in charge of component procurement

 CERN will provide raw material (both magnetic and 
non magnetic steel) to guarantee magnetic performance 
and to minimize costs

E. Todesco 10
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COMPONENTS

 Non exhaustive list of components
 Coil:

 Cable insulation

 Impregnation resin

 Winding poles 

 End spacers 

 Wedges

 Quench heaters

 Magnet:
 Collars 

 Yoke laminations

 Cold mass:
 End domes

 SS half shells

E. Todesco 11



logo

area

CONCLUSION

 We have a challenging project requiring 
substantial involvement of the industry
 Effective partnership is crucial for the success

 Several challenges
 Some new tecnologies to be applied for the first time in high 

energy accelerator magnets (Nb3Sn, plus canted magnet)

 More critical aspects
 Relatively small series, little time to react

 Many different magnets

 Timeline of procurement 

 Many collaborations, interfaces management

 Exchange of information (see  www.cern.ch/hilumi/wp3
www.cern.ch/hilumi/wp11 https://project-hl-lhc-
industry.web.cern.ch )

E. Todesco 12

http://www.cern.ch/hilumi/wp3
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A summary from F. Savary about status in 2015

Item # Description Raw material 2018 Later What is challenging

1 Coil keys AISI 316 L – DIN 1.4435 Machining (accuracy & elasticity)

2 End spacers SLS – AISI 316 L – DIN 1.4435
3D-metrology, electrical insulation is
needed

3 Saddles
Impregnated glass fiber as per

IEC/EN 61212-3-1 EP-GC22
5-axes machining, GC22, accuracy

4 Removable pole TA6V annealed (Ti6Al4V; 3.7165) Accuracy & material

5 Wedges – precision profiles
Aluminum oxide dispersion 
strengthened copper (ODS)

Accuracy, material ODS

6 Quench heaters Polyimide – St.Steel – Copper Flexible Printed Circuits

7 Collars YUS-130S (High Mn Steel) Fine blanking, accuracy

8 Collaring keys AISI 316 L – DIN 1.4435 Accuracy

9 Yoke laminations & inserts Low carbon steel Fine blanking, accuracy

10 Heat exchanger tube Oxygen Free Cu – UNS C10200 Cu quality

11 Bus bars – hollow bars Oxygen Free Cu – UNS C10200 Length, Cu quality

12 Lyras Oxygen Free Cu – UNS C10200 Cu quality

13 Shells AISI 316 LN – DIN 1.4429 Raw material, thickness, accuracy

14 End covers AISI 316 LN – DIN 1.4429 Raw material, accuracy

Legend: We are covered We need more suppliers We desperately need suppliers


