

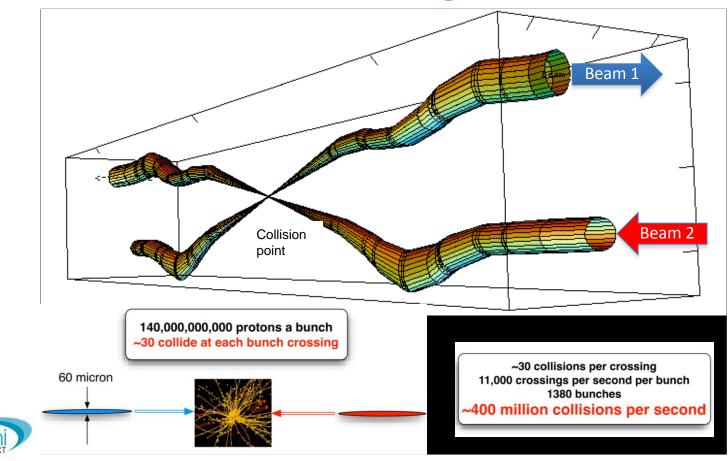
Beam Instrumentation and Electronics for Accelerators

Ray Veness, CERN Beam Instrumentation Group

2nd High-Lumi Industry Day. Lisbon 31/10/16

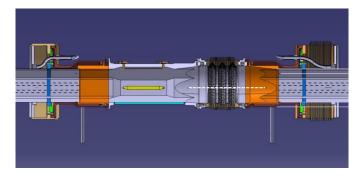
Beam instrumentation in the LHC

Beam Instrumentation: 'The eyes and ears of an accelerator' or Instruments that observe beam behaviour



Beam Instrumentation

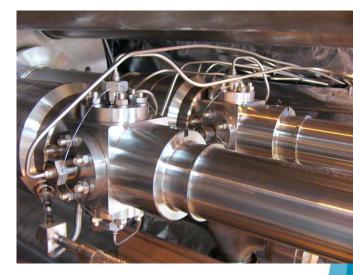
- Some numbers:
 - 2500+ instruments integrated into the beam vacuum system of the accelerators (the LHC and it's injectors)
 - 4500+ instruments close to the beamlines, in the accelerator tunnels
 - 5 New instrument concepts for HL-LHC
 - 100+ new beam vacuum instruments to be produced for HL-LHC
- What is an instrument?
 - Mechanics: vacuum chamber, movement systems, beam intercepting devices
 - Detectors: Cameras, scintillators, transformers, pickups
 - Electronics: Fast, radiation hard, analogue and digital
 - Software: acquisition, low-level controls
- For industry, this means
 - Precision and state-of-the-art, small-medium series, high added value
 - Collaboration with industry and institutes to develop new technology



HL-LHC Goal: Maximising Particle Collisions

Beam Position Monitors (BPMs) in the Final Focus

- Overview
 - Measure beam positions as they approach collision, means submicron beam orbit resolution
 - Strip-line pick-ups (with 8 feedthroughs/BPM) operating at 2 Kelvin
 - Integrated radiation absorbers (tungsten alloy)
- Requirements
 - 48 installed in high-lumi triplet magnets

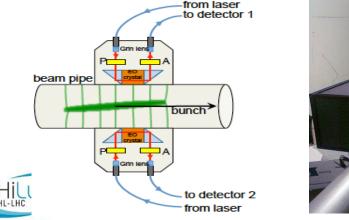

Cables for Cryogenic BPMs

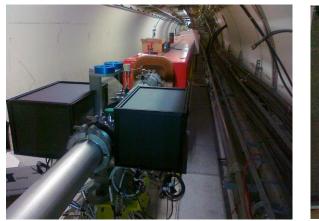
Overview

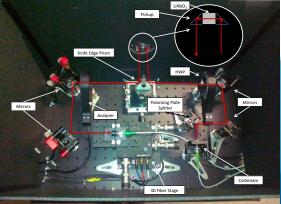
- 50 Ω co-axial cable to bring the signal from the cryostat
- Ultra-high vacuum compatible and leak tight, operating at 2 Kelvin (weldable)
- Very low hysteresis vs temperature and motion, with consistent phase and loss values (SiO₂ dielectric)

Requirements

250+ cables for different applications

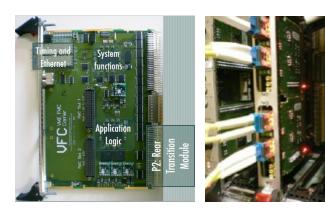





High Bandwidth BPMs

Overview

- Required for intra-bunch diagnostics (Instabilities & crab cavities), so will resolution require bandwidth > 10 GHz
- New concept, developed in collaboration with Royal Holloway, University of London based on electro-optical crystals with prototype testing under-way at CERN.
- Requirements
 - Radiation tolerance qualification of crystals, industrialisation
 - Fast electronics, Femto-second laser optics



Optical Signal Processing

Fibre optic transmission

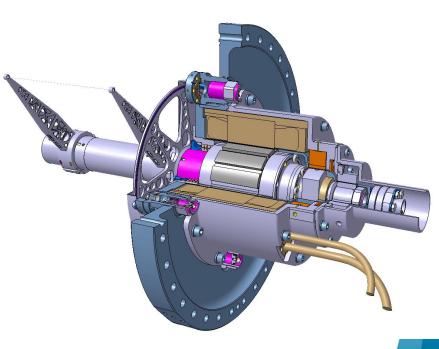
- Analogue and digital optical links
 - Distributed LHC beam instrumentation transmits information from radiation hard front-end electronics to surface electronics
 - 500+ stations with over 3000 links
 - Over 5000km of fibre-optic cabling
 - Radiation hard transmitters/receivers & optical fibres
- Next Generation
 - Radiation hard Gbit Links (GBT developed by CERN Physics Department)
 - Digital signal processing on custom FPGA motherboard


Cryogenic Beam Loss Monitors (BLMs)

Overview

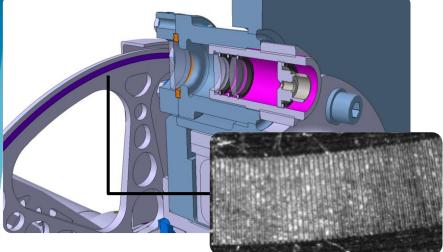
- New concept, based on silicon or diamond semiconductor detectors will allow fast localisation of beam losses in critical areas
- Required to withstand 2MGy over 10 years
- New BLM front end based on an ASIC under development.
- Project fully based on radiationtolerant-by-design active components (VTRx, GBTx)
- Requirements
 - Partners for industrialisation
 - Fast, radiation-hard electronics

32 detectors planned for installation


New Wire Scanners for the High-Lumi era

Overview

- Wire scanners give beam profile measurements, used for optimising machine performance
- Small HL-LHC beams mean a new, fast scanning, micron-precision instrument is required for the High-Lumi era

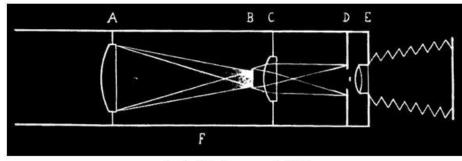

Requirements

- Ultra-high vacuum, precision mechanics with associated control and acquisition system
- Some 30 instruments for 2019 with more later
- UHV feedthroughs, laser optics, electromechanics

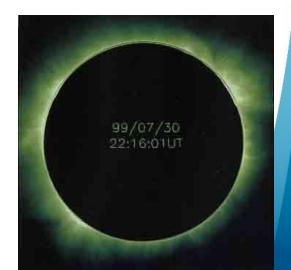
New Technology for Wire Scanners

- Optical disk made of Aluminium for lower inertia and vacuum bakeout
- Optical slits made by Laser Engineered Surface Structures (LESS) technology (Collaboration with Dundee University)

- Wire fork geometry inspired by topological optimisation code
- Produced by 3D additive machining and qualified for use in ultra-high vacuum (3T RPD)


Beam Halo Monitoring

Overview


- Required alongside novel 'beam cleaning' techniques to handle the high-intensity HL beams
- New concepts with synergies with solar and exoplanet studies

Requirements

- High dynamic range cameras with state-of-the-art range (upto 28-bit)
- Digital intensified cameras with nano-second time resolution and high-resolution gated image intensifier

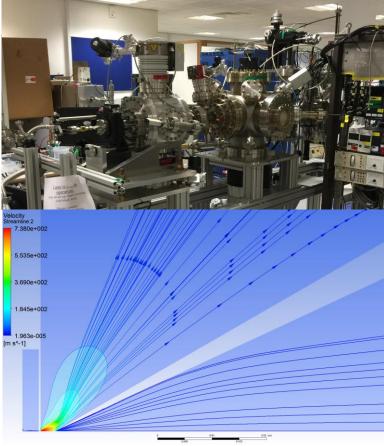
Lyot's Solar Coronagraph, 1936

Beam Gas Vertex Detector (BGV) Non destructive beam size measurement for HL-LHC

Overview

- Non-destructive beam size measurement at high energy
- New concept, based on HEP detector technology (LHCb) to re-construct beam-gas tracks
- Collaboration between CERN, EPFL (CH), RWTH (DE)
- Requirements
 - Precision mechanics
 - Silicon trackers and associated electronics

BGV Demonstrator, installed in the LHC



Beam-Gas Jet Diagnostics

Overview

- Required to observe electron and proton beams simultaneously
- New concept using a collimated gas jet, developed by the Cockcroft institute
- Development in progress to turn the proven principle into a workable instrument
- Requirements
 - Vacuum equipment (pumps, gauges, valves, controllers)
 - Optics

Summary

- Beam Instrumentation for High-Lumi means:
 - Applied Physics
 - Electromagnetic detector technology
 - Gas detector technology
 - Solid state detector technology
 - Electro-optical systems
 - Mechanical Engineering
 - In-vacuum, high-precision mechanics & electro-mechanics
 - Electronic & Software Engineering
 - Radiation tolerance
 - Digital signal processing
 - High frequency electronic engineering
 - Low noise, low current measurement
- But it also means:
 - Fruitful collaboration, leading to new technology and new products

Overview of instruments for High-Lumi

- New BPMs in the final focus
- High-bandwidth electro-optical BPMs
- Cryo-BLMs
- Wire scanners (LIU + HL-option)
- Beam halo monitors
- Beam gas vertex detector
- Beam gas jet monitor (option)

Thanks for your attention

Thanks to the BI group for their many contributions

Ray Veness / CERN 2nd Industry day / 31-10-16

Main procurement identified

What and When		
Description	Quantity	When
Semi-Rigid, Radio Frequency, Coaxial Cables utilizing glass-metal or brazed ceramic sealing technology for use in cryogenic and radiation environments.	250-350	2018-2020
Radio frequency UHV feedthroughs utilising glass-metal or brazed ceramic sealing technology for use in cryogenic and radioactive environments.	250-350	2018-2020
Packaged CVD diamond detectors for the measurement of particle beams	80-100	2017-2020
Scientific CMOS cameras Scientific High Dynamic Range Cameras Scientific Streak Cameras	5 1 + 2 2	2023 2016, 2023 2019

Instrumentation needs will continue to develop upto and beyond HL-LHC start-up

