

Associated Cryogenics for HL-LHC project

2nd HiLumi Industry Day – October 31st 2016

Laurent Delprat – CERN

CERN – 2nd HiLumi Industry Day – October 31st 2016 – IST Lisbon

OUTLOOK

- Main sub-systems concerned (to be cooled)
- The Cryogenic part of it
- Concluding remarks

HL-LHC systems are entering detailed integration phase

New baseline adopted to increase operating margins (Nb3Sn quadrupoles)

In-kind contribution and Collaborations for HW design and prototypes

Cold Powering System HTS links

- Design and construction of test station with 20 m long SC Link cryostat (CERN)
- Development of MgB₂ round wire (CERN with Columbus – Genova)
- Development of high-current (20 kA) MgB₂ cables (CERN)
- Launched procurement of 80 km of MgB₂ round wire which will be delivered as from April 2015

 $MgB_2 Wire$ $(\Phi = 0.9 mm)$

Excellent results obtained for elementary part of the cable

CÉRN

Global engineering (termination boxes, supporting) under study

Effect of the crab-cavities

To compensate for the larger crossing angle

 θ_{c}

OUTLOOK

- Main sub-systems concerned (to be cooled)
- The Cryogenic part of it
- Concluding remarks

HL-LHC Cryo Upgrade

- 2 new cryoplants (~18 kW @ 4.5 K incl. ~3 kW @ 1.8 K) at P1 and P5 for highluminosity insertions
- 1 new cryoplant (~4 kW @ 4.5 K) at P4 for SRF cryomodules. (Alternative under study: upgrade of 1 existing LHC cryoplant and distribution)
 - 11T + Q5@P6
- SRF test facility with beam at SPS-BA6 primarily for Crab-Cavities

SM18 related activities not reported here

New insertions at P1 & P5

HTS SC link Cryogenic distribution line Warm recovery line Warm piping LTS SC link Hi-Lumi LHC	New infrastructure	WCS Sto	DFBX DFBL
MB Q7DFBA Q6 Q5 Q4 CC D2 QRL	D1 CP Q3 Q2 Q1	×	Q1 Q2
DFBL LHC SC link Q6 Q5 Q4D2	n tunnel D1 <mark>DFBX Q3 Q2 Q1</mark>	IP1 or IP5 ×	Q1 Q2 Q3

Nominal layout

- Cryogenics for new cryo-assemblies (Crab cavities (CC), insertion cryomagnets, DFBs, HTS links...)
- 1 warm compressor station (WCS) in noise insulated surface building
- 1 upper cold box (UCB) in surface building
- 1 cold quench buffer (QV) in surface
- 1 or 2 cold compressor boxes (CCB) in underground cavern
- 2 main cryogenic distribution lines
- 2 interconnection valve boxes with existing QRL (partial redundancy)

18kW@4.5K incl. 3kW@1.8K (integrated - mixed cycle)

And lines, vessels, ...

Technical Infrastructures at P5

88

SU Ventilation units

SD He refrigerator

New surface buildings, shafts and caverns to be constructed, to accommodate for new Hardware to be installed

CERN - L. Delprat – 2nd HiLumi Industry Day – October 31st 2016 – IST Lisbon

SHM Helium compressor station

SU chillers & pumping stations

Size of underground structures (e.g. US/UW cavern)

Size defined by integration and transport studies of similar equipment existing at CERN

Ventilation & smoke-

extraction ducts

Cooling & ventilation

New insertion at P4

Test & Qualification

THE ZONES in the Building 2173

SM18 building, 100m x 80m, 6kW@4.5K

A serious transformation of this test station and cryogenic hardware has started and is to be continued to validate all the HL-LHC superconducting sub-systems

HILUMI

SM18 – RF M7 Bunker upgrade

Thermometry

6'000 units, +/- 10 mK @ 2K in LHC radiation conditions

From 'sensor' to 'thermometer' with signal processing

HL-LHC Cryogenics Master Schedule

P4-RF:

=> Decision baseline/alternative by end of 2016 for work @LS2

=> Then specification work during 2017, for contracts by end'2017 P1/P5:

=> 4-5 years to complete design, clarify interfaces and prepare for tendering

Concluding remarks

- The High-Luminosity LHC is a worldwide funded project corresponding to a 1.2km new accelerator (advanced Nb3Sn, Crab cavities, HTS links) progressively switching to construction, with European institutes and industry heavily involved
- Series of qualification and testing of components foreseen in the coming years
- Now, civil works and global lay-out has been decided, with project fully approved. Precise evaluation of heat-loads and cryogenic architecture are being refined prior to future call for tenders.
- ⇒ We will need new refrigerators, valve boxes, cryo-lines, vessels ... and we are here to help you selecting what could be adapted to your abilities !

Thank you for your attention

Spare Slides

HL-LHC configuration

The Inner Triplet region with in-kinds

The MS regions with in-kinds

The Insertion Region (till Q4)

What it would look like: Surface

Helium Vessels

New surface buildings, shafts and caverns to be constructed, to accommodate for new Hardware to be installed

New HL-LHC surface buildings at P1

SHM (Cryogenics)

New HL-LHC surface buildings at P5

HL-LHC underground structures at P1

HL-LHC underground structures at P5

HFM & Cluster D: procurement breakdown

- HFM
- Cryogenic valves : DO-28760
- Cryogenic Distribution System : IT-3944
- Quench Buffer : DO-28932
- Gas management panel, warm pipework : CERN
- Cluster D

QUENCH BUFFER

 Similar to HFM -> procurement w/o tendering, negotiated with companies in charge of HFM contracts

SM18 Upgrade: baseline concept

Technology validation of Crab Cavities

Service module to CC cryo module interface: -Welded internal lines, equipped with flexible hoses -Bolted external bellow with vacuum sealing

Cryogenic part studied and designed in collaboration between CRG and MME

Service module

He supply from

buffer tank

DO: 30 000

Sub-cooling 2 K heat exchanger Connections between double phase line and He tanks of the CC

CC cryo module

CERN - L. Delprat - 2nd HiLumi Industry Day - October 31st 2016 - IST Lisbon

0