

#### LHC Crab Cavities, WP4

R. Calaga on behalf of HL-LHC WP4

2<sup>nd</sup> HL-LHC Industry Day, Lisbon, Oct 31 2016



Ack: CERN (BE-RF, EN-MME, TE-VSC), UK-STFC, USLARP

#### **LHC Crab Cavities**

16 Superconducting compact RF deflectors (at two experiments) to partially compensate the geometric angle of 590  $\mu rad$ . Allows to recuperate up to 70% of unused peak luminosity

Voltage = 3.4 MV /cavity , Frequency = 400.79 MHzRF power source = 80 kW, Cavity tuning =  $\pm 100 \text{ kHz}$ Operating temperature = 2.0 K



#### **Overall WP4 Planning**



CERN

I-IHC PROJE

### **Cavity & CM Production Strategy**

- CERN will produce the Technical Specifications based on the SPS experience
- During Pre-Series phase, we plan to launch market survey (2017) to first qualify industry to build 1 dressed cavity of each type, with the option for series
- The Series production of 10 + 10 dressed cavities and cryomodule components with qualified companies.
  String assembly and cryostating foreseen at CERN



#### **Prototype Cryomodules**





#### **Bottom-Up View: Cavities**



Niobium cavities made from 4mm sheet metal Dipolar symmetry with complex interfaces

Technologies required:

- **Forming** of 3 4 mm-thick high RRR Niobium sheets Non-axisym. shapes, high aspect ratios, profile tolerance of < 0.5mm
- EB-welding: Nb/Nb & Nb/NbTi subject to stringent tolerances < 0.3mm</li>
- Brazing (/other) of Nb to S.Steel



Double

650mm

Quarter wave

# **Cavity Manufacturing R&D**

#### Early Prototypes (US)





CERN Cavity production for beam tests (Established manufacturing procedures)



#### **Dressed Cavities (~ 2K volume)**





**Fundamental** 

#### **Ti He Vessel & Assembly**

Unique bolted/welded concept for structural integrity & minimal stress to cavity

- Machining (Titanium Gr.2)
- Assembly + Titanium TIG welding
- Supply of screws (Ti Gr.5) ~250/vessel
- Supply of interconnection bellows





#### **Prototype He Vessel, Manufacturing R&D**













Pressure tests (2.6 bar)

The vacuum levels remained at  $\leq 10^{-9}$  mbar (5 thermal cycles) R. Calaga, 2nd HL-LHC Industrial Day, Oct 2016





10

#### **HOM Couplers**

One of the several complex pieces High RRR bulk RRR machined with very tight tolerances (very good results on prototypes)

Series production will require 55+ units



ria









#### Cryomodule

Manufacturing of Cryomodule components and Auxiliary systems



Sheet metal working of vessel (precision interfaces)

Cryo Line (welds tight at 2K)

Ti-S.Steel direct transitions (also @ 2K)

St. steel Bellows

Thermal shielding with Helium cooling, MLI

Alignment & support system

Supply of raw Material: Nb, NbTi, Magn. Shielding, St. Steel, Titanium



#### **RF System**

HPRF : High Power RF station (including all power supplies)FPC : Fundamental Power CouplerLLRF : RF feedbacksControls: All controls systems related to HPRF & LLRF





#### **High Power RF System**

Baseline Option: IOT power stations

- 80 kW for up to hundreds of ms, 40 kW CW
- 400 MHz, Input power < 1 mW, BW<sub>-1dB</sub> 8 MHz
- 400 VAC from the grid
- Wall plug efficiency > 55%
- Alternative option to be studied
  - SSPA with same Technical Specification
  - Final cost cheaper than IOT option



#### Schematic of the RF layout, Underground

Circulators + loads

Illustration with full installation (4 x 8 HPRF)

Only half (4 x 4 HPRF) will be installed in the LS3

Underground gallery sized for full system in the future **RF** Gallery HVPS + Amplifiers (IOTs)



## LHC RF power stations (2019-2022)

- Acquisition Strategy
  - CERN will produce Technical Specification including outcome of the SPS tests
  - 16 entire integrated systems with single supplier
  - Sub contracting of non-strategical sub-assemblies
  - Possibility to directly buy some sub-assemblies to sub-contractor (IOT tube and trolley for example)
  - Market Survey to qualify companies, invitation to Tender to qualified companies



#### Low Level RF & Slow Controls

- LLRF allows for precise regulation of the cavity field
  - Keep cavity field in phase with bunch centre, alignment of the various cavities (counter-phasing) & reduction of cavity impedance at f<sub>0</sub>
  - Fast field regulation following a cavity trip, minimize RF noise induced transverse emittance growth
- Slow controls provide a standard infrastructure to operate the RF power system & interface to external systems (cryo, vacuum, access, etc..)
  - Provide fast interlocks for protection
  - Implement the switch ON/OFF procedures for the RF power plant
  - Implement the local and Remote software interface for operation and for RF experts
  - Expose all relevant data to the CERN standard data acquisition, logging and alarms services



#### **Final Comments**

- LHC Crab Cavity system will be one of the most complex systems in the HL-LHC with several state of the art developments that are ongoing presently for technology validation in the SPS
- We are preparing for a progressive & significant involvement of industry in the coming years to industrialize the production of 8 Cryomodules and associated RF system hardware.





#### Thank you for your attention



#### Weld Map, DQW

16 complex welds to qualify & perform (with tight tolerances)



#### **Cavity Supports & Alignment**





# 2K Internal Magnetic Shields

Double QW

**RF** Dipole



Internal magnetic shields integrated by STFC-UK industry. 1 mm Cryophy, annealed after shaping, supported by Ti brackets



## **Shielding: Design for SPS Prototype**



Magnetic Shielding alloy (cryophy, μ-metal): **Forming + assembly Annealing treatment** 

Copper alloy: Forming + assembly

Copper plates, Copper pipeline brazed on the plates





Helium cold gases

#### **Power Coupler Manufacturing R&D**





#### **Tooling, Assembly & Testing**





25

FC Industrial Day, Oct 201

## **R&D for compact SSPA (2017-2018)**

Purchasing strategy, options under study

- Buy the entire integrated system
- Buy the system with several contracts
  - RF blocks
  - Combining system
  - Power supplies
  - Controls
- Mix between CERN internal development and contracts to companies



## LLRF Layout for LHC



#### RR cavern architecture:

- $\tau_a$  is the delay of the local antenna signal (20+70) x 3.7 ns = 333 ns rounded to 370 ns
- $\tau_b$  is the delay of the opposite antenna signal (320+70+20) x 3.7 ns = 1517 ns rounded to 1520 ns
- τ<sub>c</sub> is the drive path delay, including LLRF, TX, circulator and coax = 300 ns + 100 ns + 50 ns + (20+70) x 3.7 ns = 783 ns rounded to 860 ns



#### Low Level, System Architecture



Version: 20150303



#### **Slow Controls, System architecture**



One PLC to control 2cavities in a CM

#### Standard RF controls PLC and hardware components used in LINAC4 and SPS

Expected PLC cycle time **2ms** Expected Fast Interlock cycle time **15us** 





#### Interlocks

In the RF systems some signals must be controlled with a reaction time faster than a conventional automation device can do, i.e. 15usec

For this we have CERN made FPGA based interlock controllers. The required number of cards are grouped in a chassis to realize the interlock function





An example of interlock system for LINAC 4



An example of interlock module



#### **SPS Movable Table**

In the SPS tests, a movable table along with a mechanical bypass will allow to bring the two-cavity module in and out of the beam

Involves a horizontal movement of 0.51 m & Active Alignment @ SPS Test: motorized & remotely-controlled



